46 research outputs found

    High-Content Screening Identifies Vanilloids as a Novel Class of Inhibitors of NET Formation

    Get PDF
    Neutrophils migrate to sites of infection where they phagocytose, degranulate, and/or, in the presence of appropriate stimuli, release decondensed chromatin strands (called neutrophil extracellular traps, NETs) for trapping and possibly killing microorganisms. NET formation is characterized by marked morphological cell changes, in particular within the nucleus. Lytic NET formation can be observed in neutrophils undergoing cell death, which is referred to as NETosis. Dysregulation of NET production and/or degradation can exert pathogenic effects, contributing to the pathogenesis of various diseases, including cystic fibrosis, autoimmune diseases and inflammatory conditions. By employing a phenotypic assay based on high-content imaging and analysis, we screened a library of biologically active compounds and identified vanilloids as a novel class of chemical compounds able to hinder NETosis induction and NET release. Vanilloids also markedly decrease cytosolic ROS production. The identification of novel vanilloid NET inhibitors, able to stop excessive or aberrant NET production might offer new therapeutic options for those disorders displaying NET overproduction

    The Autophagy Inhibitor Spautin-1 Antagonizes Rescue of Mutant CFTR Through an Autophagy-Independent and USP13-Mediated Mechanism

    Get PDF
    The mutation F508del, responsible for a majority of cystic fibrosis cases, provokes the instability and misfolding of the CFTR chloride channel. Pharmacological recovery of F508del-CFTR may be obtained with small molecules called correctors. However, treatment with a single corrector in vivo and in vitro only leads to a partial rescue, a consequence of cell quality control systems that still detect F508del-CFTR as a defective protein causing its degradation. We tested the effect of spautin-1 on F508del-CFTR since it is an inhibitor of USP10 deubiquitinase and of autophagy, a target and a biological process that have been associated with cystic fibrosis and mutant CFTR. We found that short-term treatment of cells with spautin-1 downregulates the function and expression of F508del-CFTR despite the presence of corrector VX-809, a finding obtained in multiple cell models and assays. In contrast, spautin-1 was ineffective on wild type CFTR. Silencing and upregulation of USP13 (another target of spautin-1) but not of USP10, had opposite effects on F508del-CFTR expression/function. In contrast, modulation of autophagy with known activators or inhibitors did not affect F508del-CFTR. Our results identify spautin-1 as a novel chemical probe to investigate the molecular mechanisms that prevent full rescue of mutant CFTR

    Genetic Inhibition of the Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated to F508del Cystic Fibrosis Mutation

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins

    Alternative Splicing at a NAGNAG Acceptor Site as a Novel Phenotype Modifier

    Get PDF
    Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies

    The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis

    No full text
    Cystic fibrosis (CF), a multiorgan genetic disease, is caused by loss of function of CFTR, a cAMP-regulated anion channel. In CF airway epithelia, defective Cl(-) and bicarbonate secretion impairs mucociliary clearance and other innate defense mechanisms, favoring the colonization of the lungs by highly virulent bacteria. The airway epithelium expresses TMEM16A, a second type of Cl(-) channel that is activated by cytosolic Ca(2+). TMEM16A is particularly expressed in goblet cells. This specific localization could be important in the release and hydration of mucins. Activation of TMEM16A with pharmacological agents could circumvent the primary defect in CF. This strategy needs to be carefully designed and tested to avoid possible undesired effects due to the expression of TMEM16A in other cell types such as bronchial smooth muscle cells. This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances

    Influence of cell background on pharmacological rescue of mutant CFTR

    No full text
    Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs the maturation and gating of the CFTR protein. Such defects may be corrected in vitro by pharmacological modulators named as correctors and potentiators, respectively. We have evaluated a panel of correctors and potentiators derived from various sources to assess potency, efficacy, and mechanism of action. For this purpose, we have used functional and biochemical assays on two different cell expression systems, Fischer rat thyroid (FRT) and A549 cells. The order of potency and efficacy of potentiators was similar in the two cell types considered, with phenylglycine PG-01 and isoxazole UCCF-152 being the most potent and least potent, respectively. Most potentiators were also effective on two mutations, G551D and G1349D, that cause a purely gating defect. In contrast, corrector effect was strongly affected by cell background, with the extreme case of many compounds working in one cell type only. Our findings are in favor of a direct action of potentiators on CFTR, possibly at a common binding site. In contrast, most correctors seem to work indirectly with various mechanisms of action. Combinations of correctors acting at different levels may lead to additive F508del-CFTR rescue

    TMEM16A-TMEM16B chimaeras to investigate the structure-function relationship of calcium-activated chloride channels

    No full text
    TMEM16A and TMEM16B proteins are CaCCs (Ca2+-activated Cl- channels) with eight putative transmembrane segments. As shown previously, expression of TMEM16B generates CaCCs characterized by a 10-fold lower Ca2+ affinity and by faster activation and deactivation kinetics with respect to TMEM16A. To investigate the basis of the different properties, we generated chimaeric proteins in which different domains of the TMEM16A protein were replaced by the equivalent domains of TMEM16B. Replacement of the N-terminus, TMD (transmembrane domain) 1-2, the first intracellular loop and TMD3-4 did not change the channel's properties. Instead, replacement of intracellular loop 3 decreased the apparent Ca2+ affinity by nearly 8-fold with respect to wild-type TMEM16A. In contrast, the membrane currents derived from chimaeras containing TMD7-8 or the C-terminus of TMEM16B showed higher activation and deactivation rates without a change in Ca2+ sensitivity. Significantly accelerated kinetics were also found when the entire C-terminus of the TMEM16A protein (77 amino acid residues) was deleted. Our findings indicate that the third intracellular loop of TMEM16A and TMEM16B is the site involved in Ca2+-sensitivity, whereas the C-terminal part, including TMD7-8, affect the rate of transition between the open and the closed state

    Block of CFTR-dependent chloride currents by inhibitors of multidrug resistance-associated proteins

    No full text
    The cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein that belongs to the same family as multidrug resistance-associated proteins whose main function is to expel xenobiotics and physiological organic anions from the cell interior. Despite the overall structural similarity with these membrane proteins, CFTR is not an active transporter but is instead a Cl- channel. We have tested the ability of known inhibitors of multidrug resistance-associated proteins to affect CFTR Cl- currents. We have found that sulfinpyrazone, probenecid, and benzbromarone are also inhibitors of CFTR activity, with a mechanism involving blockage of the channel pore

    A minimal isoform of the TMEM16A protein associated with chloride channel activity

    Get PDF
    TMEM16A protein, also known as anoctamin-1, has been recently identified as an essential component of Ca(2+)-activated Cl(−) channels. We previously reported the existence of different TMEM16A isoforms generated by alternative splicing. In the present study, we have determined the functional properties of a minimal TMEM16A protein. This isoform, called TMEM16A(0), has a significantly shortened amino-terminus and lacks three alternative segments localized in the intracellular regions of the protein (total length: 840 amino acids). TMEM16A(0) expression is associated with Ca(2+)-activated Cl(−) channel activity as measured by three different functional assays based on the halide-sensitive yellow fluorescent protein, short-circuit current recordings, and patch-clamp technique. However, compared to a longer isoform, TMEM16(abc) (total length: 982 amino acids), TMEM16A(0) completely lacks voltage-dependent activation. Furthermore, TMEM16A(0) and TMEM16A(abc) have similar but not identical responses to extracellular anion replacement, thus suggesting a difference in ion selectivity and conductance. Our results indicate that TMEM16A(0) has the basic domains required for anion transport and Ca(2+)-sensitivity. However, the absence of alternative segments, which are present in more complex isoforms of TMEM16A, modifies the channel gating and ion transport ability
    corecore