88 research outputs found

    Ethnicity and gender related differences in extended intraesophageal pH monitoring parameters in infants: a retrospective study

    Get PDF
    BACKGROUND: Gastroesophageal reflux disease (GERD) is believed to be more common in adult males as compared to females. It also has been shown in adults to be more common in Caucasians. We wanted to determine ethnicity and gender related differences for extended pH monitoring parameters in infancy. METHODS: Extended pH monitoring data (EPM) from infants <1 year of age were reviewed. Results were classified in two groups, as control and Gastroesophageal reflux disease (GERD) group based on the reflux index (RI). The GERD group had RI of equal to or more than 5% of total monitoring period. The parameters of RI, total number of episodes of pH < 4, and the number of episodes with pH < 4 lasting more than 5 minutes were compared by genders and by ethnic groups, Caucasians and African American (AA). RESULTS: There were 569 infants, 388 controls, 181 with GERD (320 males, 249 females; 165 Caucasians, 375 AA). No statistical difference in EPM parameters was detected between genders in both groups. However, Caucasian infants had a significantly higher incidence of GERD than AA infants (p = 0.036). On stratifying by gender, Caucasian females had a significantly higher number of reflux episodes >5 minutes as compared to AA females in the control group (p = 0.05). Furthermore, Caucasian females with GERD showed an overall higher trend for all parameters. Caucasian males had a trend for higher mean number of reflux episodes as compared to AA males in the control group (p = 0.09). CONCLUSION: Although gender specific control data do not appear warranted in infants undergoing EPM, ethnic differences related to an overall increased incidence of pathologic GERD in Caucasian infants should be noted

    Independent impacts of aging on mitochondrial DNA quantity and quality in humans

    Get PDF
    Background The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85 years old, recruited in the TwinsUK cohorts. Results We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (β = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (β = −0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers. Conclusions Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging

    The Schizosaccharomyces pombe Hsp104 Disaggregase Is Unable to Propagate the [PSI+] Prion

    Get PDF
    The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI+] prion of Saccharomyces cerevisiae does not propagate in Δhsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104+ is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI+] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Δhsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI+]. Strikingly, [PSI+] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI+] prion

    The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review

    Get PDF
    BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF

    Assessment of age-related changes in pediatric gastrointestinal solubility

    Get PDF
    PurposeCompound solubility serves as a surrogate indicator of oral biopharmaceutical performance. Between infancy and adulthood, marked compositional changes in gastrointestinal (GI) fluids occur. This study serves to assess how developmental changes in GI fluid composition affects compound solubility.MethodsSolubility assessments were conducted in vitro using biorelevant media reflective of age-specific pediatric cohorts (i.e., neonates and infants). Previously published adult media (i.e., FaSSGF, FeSSGF, FaSSIF.v2, and FeSSIF.v2) were employed as references for pediatric media development. Investigations assessing age-specific changes in GI fluid parameters (i.e., pepsin, bile acids, pH, osmolality, etc.) were collected from the literature and served to define the composition of neonatal and infant media. Solubility assessments at 37°C were conducted for seven BCS Class II compounds within the developed pediatric and reference adult media.ResultsFor six of the seven compounds investigated, solubility fell outside an 80–125% range from adult values in at least one of the developed pediatric media. This result indicates a potential for age-related alterations in oral drug performance, especially for compounds whose absorption is delimited by solubility (i.e., BCS Class II).ConclusionDevelopmental changes in GI fluid composition can result in relevant discrepancies in luminal compound solubility between children and adults.<br/
    corecore