695 research outputs found

    Ambipolar Nernst effect in NbSe2_2

    Full text link
    The first study of Nernst effect in NbSe2_2 reveals a large quasi-particle contribution with a magnitude comparable and a sign opposite to the vortex signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall and Nernst coefficients, we argue that this large Nernst signal originates from the thermally-induced counterflow of electrons and holes and indicates a drastic change in the electron scattering rate in the CDW state. The results provide new input for the debate on the origin of the anomalous Nernst signal in high-Tc_c cuprates.Comment: 5 pages including 4 figure

    Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    Full text link
    We give here the derivation of a Gross-Pitaevskii--type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91 (2003) 030401]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided.Comment: Phys. Rev. A (accepted

    Correlation between the Extraordinary Hall Effect and Resistivity

    Full text link
    We study the contribution of different types of scattering sources to the extraordinary Hall effect. Scattering by magnetic nano-particles embedded in normal-metal matrix, insulating impurities in magnetic matrix, surface scattering and temperature dependent scattering are experimentally tested. Our new data, as well as previously published results on a variety of materials, are fairly interpreted by a simple modification of the skew scattering model

    Ideal Fermi gases in harmonic oscillator potential traps

    Full text link
    We study the thermodynamic properties of an ideal gas of fermions in a harmonic oscillator confining potential. The analogy between this problem and the de Haas-van Alphen effect is discussed and used to obtain analytical results for the chemical potential and specific heat in the case of both isotropic and anisotropic potentials. Step-like behaviour in the chemical potential, first noted in numerical studies, is obtained analytically and shown to result in an oscillatory behaviour of the specific heat when the particle number is varied. The origin of these oscillations is that part of the thermodynamic potential responsible for the de Haas-van Alphen-type effect. At low temperatures we show analytically that there are significant deviations in the specific heat from the expected linear temperature dependence, again as a consequence of the de Haas-van Alphen part of the thermodynamic potential. Results are given for one, two, and three spatial dimensions. In the anisotropic case we show how the specific heat jumps as the ratio of oscillator frequencies varies.Comment: 53 pages, 7 figure

    Quantum kinetic approach to the calculation of the Nernst effect

    Get PDF
    We show that the strong Nernst effect observed recently in amorphous superconducting films far above the critical temperature is caused by the fluctuations of the superconducting order parameter. We employ the quantum kinetic approach for the derivation of the Nernst coefficient. We present here the main steps of the calculation and discuss some subtle issues that we encountered while calculating the Nernst coefficient. In particular, we demonstrate that in the limit T=0 the contribution of the magnetization ensures the vanishing of the Nernst signal in accordance with the third law of thermodynamics. We obtained a striking agreement between our theoretical calculations and the experimental data in a broad region of temperatures and magnetic fields.Comment: 24 pages, 13 figure

    Exact first-order density matrix for a d-dimensional harmonically confined Fermi gas at finite temperature

    Full text link
    We present an exact closed form expression for the {\em finite temperature} first-order density matrix of a harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of the recent results in the literature, where exact expressions have been limited to quantities derived from the {\em diagonal} first-order density matrix. We compare our exact results with the Thomas-Fermi approximation (TFA) and demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the large-N limit. As an interesting application, we derive a closed form expression for the finite temperature Hartree-Fock exchange energy of a two-dimensional parabolically confined quantum dot. We numerically test this exact result against the 2D TF exchange functional, and comment on the applicability of the local-density approximation (LDA) to the exchange energy of an inhomogeneous 2D Fermi gas.Comment: 12 pages, 3 figures included in the text, RevTeX4. Text before Eq.(25) corrected. Additional equation following Eq.(25) has been adde

    G-Quadruplex Dynamics Contribute To Regulation Of Mitochondrial Gene Expression

    Get PDF
    Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells

    Heat kernel of integrable billiards in a magnetic field

    Full text link
    We present analytical methods to calculate the magnetic response of non-interacting electrons constrained to a domain with boundaries and submitted to a uniform magnetic field. Two different methods of calculation are considered - one involving the large energy asymptotic expansion of the resolvent (Stewartson-Waechter method) is applicable to the case of separable systems, and another based on the small time asymptotic behaviour of the heat kernel (Balian-Bloch method). Both methods are in agreement with each other but differ from the result obtained previously by Robnik. Finally, the Balian-Bloch multiple scattering expansion is studied and the extension of our results to other geometries is discussed.Comment: 13 pages, Revte

    Some exact results for a trapped quantum gas at finite temperature

    Full text link
    We present closed analytical expressions for the particle and kinetic energy spatial densities at finite temperatures for a system of noninteracting fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For d=2 and 3, exact expressions for the N-particle densities are used to calculate perturbatively the temperature dependence of the splittings of the energy levels in a given shell due to a very weak interparticle interaction in a dilute Fermi gas. In two dimensions, we obtain analytically the surprising result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in the lowest order even when the exact, rather than the Thomas-Fermi expression for the particle density is used. We also demonstrate rigorously (in two dimensions) the reduction of the exact zero-temperature fermionic expressions to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include

    The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6

    Full text link
    The diffusion of vortices down a thermal gradient produces a Josephson signal which is detected as the vortex Nernst effect. In a recent report, Xu et al., Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have re-analyzed in detail the carrier contribution to the Nernst signal. By supplementing new Nernst measurements with thermopower and Hall-angle data, we isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its profile provides an objective determination of T_{\nu}. With the new results, we revise the phase diagram for the fluctuation regime in LSCO to accomodate the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that the carrier contribution is virtually negligible for y in the range 0.4-0.6. The evidence for an extended temperature interval with vortex-like excitations is even stronger in this system. Finally, we discuss how T_{\nu} relates to the pseudogap temperature T* and the implications of strong fluctuations between the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure
    • …
    corecore