125 research outputs found
Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity
Natural killer (NK) cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs). Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs) designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings
Immunotherapy of Neuroblastoma: Facts and Hopes
While the adoption of multimodal therapy including surgery, radiation, and aggressive combination-chemotherapy has improved outcomes for many children with high-risk neuroblastoma, we appear to have reached a plateau in what can be achieved with cytotoxic therapies alone. Most children with cancer, including high-risk neuroblastoma, do not benefit from treatment with immune-checkpoint-inhibitors (ICI) that have revolutionized the treatment of many highly immunogenic adult solid tumors. This likely reflects the low tumor mutation burden as well as the downregulated MHC-I that characterizes most high-risk neuroblastomas. For these reasons, neuroblastoma represents an immunotherapeutic challenge that may be a model for the creation of effective immunotherapy for other "cold" tumors in children and adults that do not respond to ICI. The identification of strong expression of the disialoganglioside, GD2, on the surface of nearly all neuroblastoma cells provided a target for immune recognition by anti-GD2 mAbs which recruit Fc-receptor-expressing innate immune cells that mediate cytotoxicity or phagocytosis. Adoption of anti-GD2 antibodies into both upfront and relapse treatment protocols has dramatically increased survival rates and altered the landscape for children with high-risk neuroblastoma. This review describes how these approaches have been expanded to additional combinations and forms of immunotherapy that have already demonstrated clear clinical benefit. We also describe the efforts to identify additional immune targets for neuroblastoma. Finally we summarize newer approaches being pursued that may well help both innate and adaptive immune cells, endogenous or genetically engineered, to more effectively destroy neuroblastoma cells, in order to better induce complete remission and prevent recurrence
Immunotherapy for Pediatric Cancer
AbstractImprovements in adult cancer survivorship can be achieved from behavioral changes and adopting screening programs. Yet, these approaches cannot be readily applied to lower the morbidity and mortality from childhood cancers. Rather, pediatric oncologists must rely on procedures and therapies to treat, rather than prevent malignancies. The systematic application of chemotherapy, radiation therapy, and surgery has led to remarkable advances in survival but these improvements have come at a cost. Children routinely receive chemotherapy agents that were designed decades ago, and these drugs have predictable side effects that result in the loss of potential for long-term survivors. The advent of targeted applications of immune-based therapies offers children with cancer a new class of oncolytic therapies that may be used to treat disease refractory to conventional approaches and lessen the toxicity of current treatment regimens without compromising remission. This review explores how 3 components of the immune system—T cells, natural killer (NK) cells, and antibodies—can be used for therapy of pediatric malignancies
HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy
Killer-cell immunoglobulin-like receptors (KIRs) are a family of glycoproteins expressed primarily on natural killer cells that can regulate their function. Inhibitory KIRs recognize MHC class I molecules (KIR-ligands) as ligands. We have reported associations of KIRs and KIR-ligands for patients in two monoclonal antibody (mAb)-based trials: (1) A Children\u27s Oncology Group (COG) trial for children with high-risk neuroblastoma randomized to immunotherapy treatment with dinutuximab (anti-GD2 mAb) + GM-CSF + IL-2 + isotretinion or to treatment with isotretinoin alone and (2) An Eastern Cooperative Oncology Group (ECOG) trial for adults with low-tumor burden follicular lymphoma responding to an induction course of rituximab (anti-CD20 mAb) and randomized to treatment with maintenance rituximab or no-maintenance rituximab. In each trial, certain KIR/KIR-ligand genotypes were associated with clinical benefit for patients randomized to immunotherapy treatment (immunotherapy in COG; maintenance rituximab in ECOG) as compared to patients that did not receive the immunotherapy [isotretinoin alone (COG); no-maintenance (ECOG)]. Namely, patients with both KIR3DL1 and its HLA-Bw4 ligand (KIR3DL1+/HLA-Bw4+ genotype) had improved clinical outcomes if randomized to immunotherapy regimens, as compared to patients with the KIR3DL1+/HLA-Bw4+ genotype randomized to the non-immunotherapy regimen. Conversely, patients that did not have the KIR3DL1+/HLA-Bw4+ genotype showed no evidence of a difference in outcome if receiving the immunotherapy vs. no-immunotherapy. For each trial, HLA-Bw4 status was determined by assessing the genotypes of three separate isoforms of HLA-Bw4: (1) HLA-B-Bw4 with threonine at amino acid 80 (B-Bw4-T80); (2) HLA-B-Bw4 with isoleucine at amino acid 80 (HLA-B-Bw4-I80); and (3) HLA-A with a Bw4 epitope (HLA-A-Bw4). Here, we report on associations with clinical outcome for patients with KIR3DL1 and these separate isoforms of HLA-Bw4. Patients randomized to immunotherapy with KIR3DL1+/A-Bw4+ or with KIR3DL1+/B-Bw4-T80+ had better outcome vs. those randomized to no-immunotherapy, whereas for those with KIR3DL1+/B-Bw4-I80+ there was no evidence of a difference based on immunotherapy vs. no-immunotherapy. Additionally, we observed differences within treatment types (either within immunotherapy or no-immunotherapy) that were associated with the genotype status for the different KIR3DL1/HLA-Bw4-isoforms. These studies suggest that specific HLA-Bw4 isoforms may differentially influence response to these mAb-based immunotherapy, further confirming the involvement of KIR-bearing cells in tumor-reactive mAb-based cancer immunotherapy
A Comprehensive Safety Trial of Chimeric Antibody 14.18 With GM-CSF, IL-2, and Isotretinoin in High-Risk Neuroblastoma Patients Following Myeloablative Therapy: Children\u27s Oncology Group Study ANBL0931
Purpose: A phase 3 randomized study (COG ANBL0032) demonstrated significantly improved outcome by adding immunotherapy with ch14.18 antibody to isotretinoin as post-consolidation therapy for high-risk neuroblastoma (NB). This study, ANBL0931, was designed to collect FDA-required safety/toxicity data to support FDA registration of ch14.18. Experimental design: Newly diagnosed high-risk NB patients who achieved at least a partial response to induction therapy and received myeloablative consolidation with stem cell rescue were enrolled to receive six courses of isotretinoin with five concomitant cycles of ch14.18 combined with GM-CSF or IL2. Ch14.18 infusion time was 10-20 h per dose. Blood was collected for cytokine analysis and its association with toxicities and outcome. Results: Of 105 patients enrolled, five patients developed protocol-defined unacceptable toxicities. The most common grade \u3e/= 3 non-hematologic toxicities of immunotherapy for cycles 1-5, respectively, were neuropathic pain (41, 28, 22, 31, 24%), hypotension (10, 17, 4, 14, 8%), allergic reactions (ARs) (3, 10, 5, 7, 2%), capillary leak syndrome (1, 4, 0, 2, 0%), and fever (21, 59, 6, 32, 5%). The 3-year event-free survival and overall survival were 67.6 +/- 4.8% and 79.1 +/- 4.2%, respectively. AR during course 1 was associated with elevated serum levels of IL-1Ra and IFNgamma, while severe hypotension during this course was associated with low IL5 and nitrate. Higher pretreatment CXCL9 level was associated with poorer event-free survival (EFS). Conclusion: This study has confirmed the significant, but manageable treatment-related toxicities of this immunotherapy and identified possible cytokine biomarkers associated with select toxicities and outcome. EFS and OS appear similar to that previously reported on ANBL0032
Cyclophosphamide augments the efficacy of in situ vaccination in a mouse melanoma model
IntroductionWe have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice.MethodsTreatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry.ResultsSimilar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge.ConclusionTaken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations
Single cell metabolic imaging of tumor and immune cells in vivo in melanoma bearing mice
IntroductionMetabolic reprogramming of cancer and immune cells occurs during tumorigenesis and has a significant impact on cancer progression. Unfortunately, current techniques to measure tumor and immune cell metabolism require sample destruction and/or cell isolations that remove the spatial context. Two-photon fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent metabolic coenzymes nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) provides in vivo images of cell metabolism at a single cell level.MethodsHere, we report an immunocompetent mCherry reporter mouse model for immune cells that express CD4 either during differentiation or CD4 and/or CD8 in their mature state and perform in vivo imaging of immune and cancer cells within a syngeneic B78 melanoma model. We also report an algorithm for single cell segmentation of mCherry-expressing immune cells within in vivo images.ResultsWe found that immune cells within B78 tumors exhibited decreased FAD mean lifetime and an increased proportion of bound FAD compared to immune cells within spleens. Tumor infiltrating immune cell size also increased compared to immune cells from spleens. These changes are consistent with a shift towards increased activation and proliferation in tumor infiltrating immune cells compared to immune cells from spleens. Tumor infiltrating immune cells exhibited increased FAD mean lifetime and increased protein-bound FAD lifetime compared to B78 tumor cells within the same tumor. Single cell metabolic heterogeneity was observed in both immune and tumor cells in vivo.DiscussionThis approach can be used to monitor single cell metabolic heterogeneity in tumor cells and immune cells to study promising treatments for cancer in the native in vivo context
Evaluation of novel immunocytokines that preferentially target high or intermediate affinity IL-2 receptors
Peer Reviewe
Increasing the Clinical Efficacy of NK and Antibody-Mediated Cancer Immunotherapy: Potential Predictors of Successful Clinical Outcome Based on Observations in High-Risk Neuroblastoma
Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-modality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialoganglioside (GD2), highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD2 mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD2 mAb directly linked to IL2, and anti-tumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome. In this review, we discuss factors that affect response to mAb-based tumor therapies such as hu14.18-IL2. Many of our observations have been made in the context of NBL; however, we will also include some observations made with mAbs targeting other tumor types that are consistent with results in NBL. Therefore, we hypothesize that the NBL observations discussed here may also be relevant to mAb therapy for other cancers, in which ADCC is known to play a role
- …