3 research outputs found

    One pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles composite for sensitive and low level detection of catechol

    Get PDF
    A simple and cost effective synthesis of nanomaterials with advanced physical and chemical properties have received much attention to the researchers, and is of interest to the researchers from different disciplines. In the present work, we report a simple and one pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles (PM-AuNPs) composite. The PM-AuNPs composite was prepared by a single step electrochemical method, wherein the AuNPs and PM were simultaneously fabricated on the electrode surface. The as-prepared materials were characterized by various physicochemical methods. The PM-AuNPs composite modified electrode was used as an electrocatalyst for oxidation of catechol (CC) due to its well-defined redox behavior and enhanced electro-oxidation ability towards CC than other modified electrodes. Under optimized conditions, the differential pulse voltammetry (DPV) was used for the determination of CC. The DPV response of CC was linear over the concentration ranging from 0.5 to 175.5 μM with a detection limit of 0.011 μM. The PM-AuNPs composite modified electrode exhibits the high selectivity in the presence of range of potentially interfering compounds including dihydroxybenzene isomers. The sensor shows excellent practicality in CC containing water samples, which reveals the potential ability of PM-AuNPs composite modified electrode towards the determination of CC in real samples

    SrMnO3/Functionalized h-BN Composite Modified Disposable Sensor for the Voltammetric Determination of Furaltadone Antibiotic Drug

    No full text
    Improper disposal of pharmaceutical drugs, including antibiotics, can affect the ecological system and generate serious health problems for living organisms. In this work, we have developed an electrochemical sensor based on a strontium manganese oxide/functionalized hexagonal boron nitride (SrMnO3/f-BN) electrocatalyst for the detection of the antibiotic drug furaltadone (FLD). Various analytical techniques were used to characterize the physicochemical properties of the as-prepared SrMnO3/f-BN composite. The as-fabricated SrMnO3/f-BN composite electrode showed excellent sensing activity towards FLD, with a wide linear range (0.01–152.11 µM) and low detection limit (2.0 nM). The sensor exhibited good selectivity towards FLD for detection in the presence of various interfering species (nitro compounds, metal ions, and biological compounds). Interestingly, real-time analysis using the proposed SrMnO3/f-BN composite was able to determine the FLD content in human urine and wastewater samples with good recovery. Hence, the as-developed SrMnO3/f-BN modified sensor could be viable in practical applications to target the antibiotic drug FLD in both human fluids and environmental samples

    SrMnO<sub>3</sub>/Functionalized h-BN Composite Modified Disposable Sensor for the Voltammetric Determination of Furaltadone Antibiotic Drug

    No full text
    Improper disposal of pharmaceutical drugs, including antibiotics, can affect the ecological system and generate serious health problems for living organisms. In this work, we have developed an electrochemical sensor based on a strontium manganese oxide/functionalized hexagonal boron nitride (SrMnO3/f-BN) electrocatalyst for the detection of the antibiotic drug furaltadone (FLD). Various analytical techniques were used to characterize the physicochemical properties of the as-prepared SrMnO3/f-BN composite. The as-fabricated SrMnO3/f-BN composite electrode showed excellent sensing activity towards FLD, with a wide linear range (0.01–152.11 µM) and low detection limit (2.0 nM). The sensor exhibited good selectivity towards FLD for detection in the presence of various interfering species (nitro compounds, metal ions, and biological compounds). Interestingly, real-time analysis using the proposed SrMnO3/f-BN composite was able to determine the FLD content in human urine and wastewater samples with good recovery. Hence, the as-developed SrMnO3/f-BN modified sensor could be viable in practical applications to target the antibiotic drug FLD in both human fluids and environmental samples
    corecore