749 research outputs found

    Hydrodynamics from the Dp-brane

    Get PDF
    We complete the computation of viscous transport coefficients in the near horizon geometries that arise from a stack of black Dp-branes for p=2,...,6 in the decoupling limit. The main new result is the obtention of the bulk viscosity which, for all p, is found to be related to the speed of sound by the simple relation \zeta/\eta = -2(v_s^2-1/p). For completeness the shear viscosity is rederived from gravitational perturbations in the shear and scalar channels. We comment on technical issues like the counterterms needed, or the possible dependence on the conformal frame.Comment: 15 page

    Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts

    Full text link
    We theoretically investigate electron spin injection and spin-polarization sensitive current detection at Schottky contacts between a ferromagnetic metal and an n-type or p-type semiconductor. We use spin-dependent continuity equations and transport equations at the drift-diffusion level of approximation. Spin-polarized electron current and density in the semiconductor are described for four scenarios corresponding to the injection or the collection of spin polarized electrons at Schottky contacts to n-type or p-type semiconductors. The transport properties of the interface are described by a spin-dependent interface resistance, resulting from an interfacial tunneling region. The spin-dependent interface resistance is crucial for achieving spin injection or spin polarization sensitivity in these configurations. We find that the depletion region resulting from Schottky barrier formation at a metal/semiconductor interface is detrimental to both spin injection and spin detection. However, the depletion region can be tailored using a doping density profile to minimize these deleterious effects. For example, a heavily doped region near the interface, such as a delta-doped layer, can be used to form a sharp potential profile through which electrons tunnel to reduce the effective Schottky energy barrier that determines the magnitude of the depletion region. The model results indicate that efficient spin-injection and spin-polarization detection can be achieved in properly designed structures and can serve as a guide for the structure design.Comment: RevTex

    Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy

    Full text link
    The holographic principle is tested by examining the logarithmic and higher order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ black hole, I find some disagreement in the principle for a holography screen at spatial infinity beyond the leading order, but a holography with the screen at the horizon does not, with an appropriate choice of a period parameter, which has been undetermined at the leading order, in Carlip's horizon-CFT approach for black hole entropy in any dimension. Its higher dimensional generalization is considered to see a universality of the parameter choice. The horizon holography from Carlip's is compared with several other realizations of a horizon holography, including induced Wess-Zumino-Witten model approaches and quantum geometry approach, but none of the these agrees with Carlip's, after clarifications of some confusions. Some challenging open questions are listed finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow are more clearly explained. Careful distingtion between the implications of my results to AdS/CFT and to the holograhic principl

    Magnetic fields in the early universe in the string approach to MHD

    Get PDF
    There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field generated during the radiation-dominated era in the early Universe. Causality dictates that the field lines form a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnection, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted form of the power spectrum, and discuss insights gained from the string approximation, in particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference

    Magnetized cosmological perturbations

    Get PDF
    A large-scale cosmic magnetic field affects not only the growth of density perturbations, but also rotational instabilities and anisotropic deformation in the density distribution. We give a fully relativistic treatment of all these effects, incorporating the magneto-curvature coupling that arises in a relativistic approach. We show that this coupling produces a small enhancement of the growing mode on superhorizon scales. The magnetic field generates new nonadiabatic constant and decaying modes, as well as nonadiabatic corrections to the standard growing and decaying modes. Magnetized isocurvature perturbations are purely decaying on superhorizon scales. On subhorizon scales before recombination, magnetized density perturbations propagate as magneto-sonic waves, leading to a small decrease in the spacing of acoustic peaks. Fluctuations in the field direction induce scale-dependent vorticity, and generate precession in the rotational vector. On small scales, magnetized density vortices propagate as Alfv\'{e}n waves during the radiation era. After recombination, they decay slower than non-magnetized vortices. Magnetic fluctuations are also an active source of anisotropic distortion in the density distribution. We derive the evolution equations for this distortion, and find a particular growing solution.Comment: Revised version, typos corrected, to appear in Phys. Rev.

    Anisotropic Conformal Infinity

    Full text link
    We generalize Penrose's notion of conformal infinity of spacetime, to situations with anisotropic scaling. This is relevant not only for Lifshitz-type anisotropic gravity models, but also in standard general relativity and string theory, for spacetimes exhibiting a natural asymptotic anisotropy. Examples include the Lifshitz and Schrodinger spaces (proposed as AdS/CFT duals of nonrelativistic field theories), warped AdS_3, and the near-horizon extreme Kerr geometry. The anisotropic conformal boundary appears crucial for resolving puzzles of holographic renormalization in such spacetimes.Comment: 11 page

    Композити як одне з основних джерел розвитку і збагачення словникового складу англійської мови (на матеріалах британського національного корпусу текстів (BNC)

    Get PDF
    У статті розглянуто основні характеристики композитів як продуктивного способу словотворення, проаналізовано різні підходи до класифікації композита як феномену, подано результати лінгвістичного дослідження графічного зображення композитів та частотності їх використання в сучасної англійської мові (на матеріалах Британського національного корпусу текстів (BNC). Виділено основні характеристик ендоцентричних та екзоцентричних композитів.В статье рассмотрены основные характеристики композита как продуктивного способа словообразования, проанализированы разные подходы к классификации композита как феномена, представлены результаты лингвистического исследования графического изображения композитов и частотности их использования в современном английском языке (на материалах Британского национального корпуса текстов (BNC). Выделены основные характеристики так называемых эндоцентрических и экзоцентрических композитов.The article examines the phenomenon of composite (compound) as the productive mean of word-formation. The different approaches to the classification of the phenomenon of composits in English are analyzed. The results of the linguistic research of the spelling of composites in Modern English are given (based on the British National Corpus (BNC). The spelling of English compounds depends on the complexity of their constituents. The relevant generalization seems to be that spellers tend to insert a space in compounds if any of its constituents is morphologically complex. In respect to the first constituent this tendency is particularly strong, so that solid compounds in English are overwhelmingly written with a monomorphemic first constituent. The exceptions to this generalization are not numerous and almost all can be accounted for in a principled way. The compound types which are easier to process are more frequent, and are also more often spelled solid. According to the proposed analysis of English compounds, solid compounds seem to differ from open compounds in four important features: spelling, morphological structure, and productivity

    Higher order WKB corrections to black hole entropy in brick wall formalism

    Full text link
    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.Comment: 21 pages, published versio
    corecore