13,765 research outputs found

    Kinetically-controlled thin-film growth of layered β\beta- and γ\gamma-Nax_{x}CoO2_{2} cobaltate

    Full text link
    We report growth characteristics of epitaxial β\beta-Na0.6_{0.6}CoO2_{2} and γ\gamma-Na0.7_{0.7}CoO2_{2} thin films on (001) sapphire substrates grown by pulsed-laser deposition. Reduction of deposition rate could change structure of Nax_{x}CoO2_{2} thin film from β\beta-phase with island growth mode to γ\gamma-phase with layer-by-layer growth mode. The γ\gamma-Na0.7_{0.7}CoO2_{2} thin film exhibits spiral surface growth with multiterraced islands and highly crystallized texture compared to that of the β\beta-Na0.6_{0.6}CoO2_{2} thin film. This heterogeneous epitaxial film growth can give opportunity of strain effect of physical properties and growth dynamics of Nax_{x}CoO2_{2} as well as subtle nature of structural change.Comment: accepted for publication in Applied Physics Letter

    Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals

    Full text link
    We consider the classical magnetoresistance of a Weyl metal in which the electron Fermi surface possess nonzero fluxes of the Berry curvature. Such a system may exhibit large negative magnetoresistance with unusual anisotropy as a function of the angle between the electric and magnetic fields. In this case the system can support a new type of plasma waves. These phenomena are consequences of chiral anomaly in electron transport theory.Comment: 4 pages, 2 figure

    Decay of scalar turbulence revisited

    Full text link
    We demonstrate that at long times the rate of passive scalar decay in a turbulent, or simply chaotic, flow is dominated by regions (in real space or in inverse space) where mixing is less efficient. We examine two situations. The first is of a spatially homogeneous stationary turbulent flow with both viscous and inertial scales present. It is shown that at large times scalar fluctuations decay algebraically in time at all spatial scales (particularly in the viscous range, where the velocity is smooth). The second example explains chaotic stationary flow in a disk/pipe. The boundary region of the flow controls the long-time decay, which is algebraic at some transient times, but becomes exponential, with the decay rate dependent on the scalar diffusion coefficient, at longer times.Comment: 4 pages, no figure

    Deuterium site occupancy and phase boundaries in ZrNiDx (0.87<=x<=3.0)

    Get PDF
    ZrNiDx samples with compositions between x=0.87 and x=3.0 were investigated by 2H magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR), powder x-ray diffraction (XRD), neutron vibrational spectroscopy (NVS), and neutron powder diffraction (NPD). The rigid-lattice MAS-NMR spectrum for a ZrNiD0.88 sample in the triclinic beta phase shows a single phase with two well-resolved resonances at +11.5 and −1.7 ppm, indicating that two inequivalent D sites are occupied, as was observed previously in ZrNiD1.0. For ZrNiD0.88, the ratio of spectral intensities of the two lines is 1:0.76, indicating that the D site corresponding to the +11.5 ppm line has the lower site energy and is fully occupied. Similarly, the neutron vibrational spectra for ZrNiD0.88 clearly confirm that at least two sites are occupied. For ZrNiD1.0, XRD indicates that ~5% of the metal atoms are in the gamma phase, corresponding to an upper composition for the beta phase of x=0.90±0.04, consistent with the MAS-NMR and neutron vibrational spectra indicating that x=0.88 is single phase. The MAS-NMR and NVS of ZrNiD1.87 indicate a mixed-phase sample (beta+gamma) and clearly show that the two inequivalent sites observed at x=0.88 cannot be attributed to the sites normally occupied in the gamma phase. For ZrNiD2.75, NPD results indicate a gamma-phase boundary of x=2.86±0.03 at 300 K, increasing to 2.93±0.02 at 180 K and below, in general agreement with the phase boundary estimated from the NVS and MAS-NMR spectra of ZrNiD1.87. Rigid-lattice 2H MAS-NMR spectra of ZrNiD2.75 and ZrNiD2.99 show a ratio of spectral intensities of 1.8±0.1:1 and 2.1±0.1:1 (Zr3Ni:Zr3Ni2), respectively, indicating complete occupancy of the lower-energy Zr3Ni2 site, consistent with the NPD results. For each composition, the correlation time for deuterium hopping was determined at the temperature where resolved peaks in the MAS-NMR spectrum coalesce due to motion between inequivalent D sites. The measured correlation times are consistent with previously determined motional parameters for ZrNiHx

    A Novel Approach to Discontinuous Bond Percolation Transition

    Full text link
    We introduce a bond percolation procedure on a DD-dimensional lattice where two neighbouring sites are connected by NN channels, each operated by valves at both ends. Out of a total of NN, randomly chosen nn valves are open at every site. A bond is said to connect two sites if there is at least one channel between them, which has open valves at both ends. We show analytically that in all spatial dimensions, this system undergoes a discontinuous percolation transition in the NN\to \infty limit when γ=lnnlnN\gamma =\frac{\ln n}{\ln N} crosses a threshold. It must be emphasized that, in contrast to the ordinary percolation models, here the transition occurs even in one dimensional systems, albeit discontinuously. We also show that a special kind of discontinuous percolation occurs only in one dimension when NN depends on the system size.Comment: 6 pages, 6 eps figure

    Structural transitions and nonmonotonic relaxation processes in liquid metals

    Full text link
    Structural transitions in melts as well as their dynamics are considered. It is supposed that liquid represents the solution of relatively stable solid-like locally favored structures (LFS) in the surrounding of disordered normal-liquid structures. Within the framework of this approach the step changes of liquid Co viscosity are considered as liquid-liquid transitions. It is supposed that this sort of transitions represents the cooperative medium-range bond ordering, and corresponds to the transition of the "Newtonian fluid" to the "structured fluid". It is shown that relaxation processes with oscillating-like time behavior (ω102\omega \sim 10^{-2}~s1s^{-1}) of viscosity are possibly close to this point

    Spin Currents Induced by Nonuniform Rashba-Type Spin-Orbit Field

    Full text link
    We study the spin relaxation torque in nonmagnetic or ferromagnetic metals with nonuniform spin-orbit coupling within the Keldysh Green's function formalism. In non-magnet, the relaxation torque is shown to arise when the spin-orbit coupling is not uniform. In the absence of an external field, the spin current induced by the relaxation torque is proportional to the vector chirality of Rashba-type spin-orbit field (RSOF). In the presence of an external field, on the other hand, spin relaxation torque arises from the coupling of the external field and vector chirality of RSOF. Our result indicates that spin-sink or source effects are controlled by designing RSOF in junctions.Comment: 3 figure

    Nonequilibrium spin transport on Au(111) surfaces

    Get PDF
    The well-known experimentally observed \textit{sp}-derived Au(111) Shockley surface states with Rashba spin splitting are perfectly fit by an effective tight-binding model, considering a two-dimensional hexagonal lattice with pzp_{z}-orbital and nearest neighbor hopping only. The extracted realistic band parameters are then imported to perform the Landauer-Keldysh formalism to calculate nonequilibrium spin transport in a two-terminal setup sandwiching a Au(111) surface channel. Obtained results show strong spin density on the Au(111) surface and demonstrate (i) intrinsic spin-Hall effect, (ii) current-induced spin polarization, and (iii) Rashba spin precession, all of which have been experimentally observed in semiconductor heterostructures, but not in metallic surface states. We therefore urge experiments in the latter for these spin phenomena.Comment: 5 pages, 3 figures, to be published in Phys. Rev.

    Shear sum rules at finite chemical potential

    Full text link
    We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T_{xy} component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N=4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.Comment: The proof for the absence of branch cuts is corrected.Results unchange

    Deconstructing holographic liquids

    Full text link
    We argue that there exist simple effective field theories describing the long-distance dynamics of holographic liquids. The degrees of freedom responsible for the transport of charge and energy-momentum are Goldstone modes. These modes are coupled to a strongly coupled infrared sector through emergent gauge and gravitational fields. The IR degrees of freedom are described holographically by the near-horizon part of the metric, while the Goldstone bosons are described by a field-theoretical Lagrangian. In the cases where the holographic dual involves a black hole, this picture allows for a direct connection between the holographic prescription where currents live on the boundary, and the membrane paradigm where currents live on the horizon. The zero-temperature sound mode in the D3-D7 system is also re-analyzed and re-interpreted within this formalism.Comment: 21 pages, 2 figure
    corecore