We derive sum rules which constrain the spectral density corresponding to the
retarded propagator of the T_{xy} component of the stress tensor for three
gravitational duals. The shear sum rule is obtained for the gravitational dual
of the N=4 Yang-Mills, theory of the M2-branes and M5-branes all at finite
chemical potential. We show that at finite chemical potential there are
additional terms in the sum rule which involve the chemical potential. These
modifications are shown to be due to the presence of scalars in the operator
product expansion of the stress tensor which have non-trivial vacuum
expectation values at finite chemical potential.Comment: The proof for the absence of branch cuts is corrected.Results
unchange