5 research outputs found

    Biological Safety and Biodistribution of Chitosan Nanoparticles

    No full text
    The effect of unmodified chitosan nanoparticles with a size of ~100 nm and a weakly positive charge on blood coagulation, metabolic activity of cultured cardiomyocytes, general toxicity, biodistribution, and reactive changes in rat organs in response to their single intravenous administration at doses of 1, 2, and 4 mg/kg was studied. Chitosan nanoparticles (CNPs) have a small cytotoxic effect and have a weak antiplatelet and anticoagulant effect. Intravenous administration of CNPs does not cause significant hemodynamic changes, and 30 min after the CNPs administration, they mainly accumulate in the liver and lungs, without causing hemolysis and leukocytosis. The toxicity of chitosan nanoparticles was manifested in a dose-dependent short-term delay in weight gain with subsequent recovery, while in the 2-week observation period no signs of pain and distress were observed in rats. Granulomas found in the lungs and liver indicate slow biodegradation of chitosan nanoparticles. In general, the obtained results indicate a good tolerance of intravenous administration of an unmodified chitosan suspension in the studied dose range

    Strange Hadron Spectroscopy with Secondary KL Beam in Hall D

    No full text
    Final version of the KLF Proposal [C12-19-001] approved by JLab PAC48. The intermediate version of the proposal was posted in arXiv:1707.05284 [hep-ex]. 103 pages, 52 figures, 8 tables, 324 references. Several typos were fixedWe propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of 1×104 KL/sec1\times 10^4~K_L/sec, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced Λ\Lambda, Σ\Sigma, Ξ\Xi, and Ω\Omega hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM cosθ\cos\theta from 0.95-0.95 to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the Ξ\Xi and Ω\Omega hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state KπK\pi system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant K(Kπ)K^\ast(K\pi) SS-,PP-,DD-,FF-, and GG-wave resonances, settle the question of the existence or nonexistence of scalar meson κ/K0(700)\kappa/K_0^\ast(700) and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general
    corecore