13 research outputs found

    Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin

    Get PDF
    The interaction of leech-derived tryptase inhibitor (LDTI) with bovine liver capsule tryptase (BLCT) and bovine trypsin has been studied using both thermodynamic and kinetic approaches. Several differences were detected: (i) the equilibrium affinity of LDTI for BLCT (K-a = 8.9 x 10(5) M-1) is about 600-fold lower than that for bovine trypsin (K-a = 5.1 x 10(8) M-1); (ii) LDTI behaves as a purely non-competitive inhibitor of BLCT, while it is a purely competitive inhibitor of bovine trypsin. These functional data are compared with those previously reported for the LDTI binding to human tryptase, where tight inhibition occurs at two of the four active sites of the tetramer (K-a = 7.1 x 10(8) M-1). Amino acid sequence alignment of BLCT, human beta II-tryptase and bovine trypsin allows us to infer some possible structural basis for the observed functional differences

    Tryptase as a PAR-2 activator in joint inflammation

    Get PDF
    Protease-activated receptor-2 (PAR-2) is one of a family of G-protein coupled transmembrane receptors activated by proteolytic release of a 'tethered' ligand. We previously reported this receptor has a pivotal role in chronic joint inflammation using a PAR-2 'knockout' mouse [1], but the serine protease responsible for its activation remains uncertain

    Epoxysuccinyl peptide-derived affinity labels for cathepsin B

    Get PDF
    AbstractExtracellular cysteine proteases, in particular cathepsin B, have been implicated in a variety of pathological processes. Selectively targeting labels of this enzyme are important tools to gain more detailed understanding of its specific roles. Starting from our recently developed irreversible epoxysuccinyl-based inhibitor (R-Gly-Gly-Leu-(2S,3S)-tEps-Leu-Pro-OH, R=OMe), we have synthesized two affinity labels, R=NH-(CH2)6-NH-rhodamine B and R=NH-(CH2)6-NH-biotin. Using MCF-7 cells, the labeled inhibitors were shown to be virtually non-cell-permeant. Moreover, affinity blot analysis with the biotinylated inhibitor allowed a highly sensitive and selective non-radioactive detection of active cathepsin B

    Supplementary Material for: Mast Cell Tryptase Potentiates Neutrophil Extracellular Trap Formation

    No full text
    Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils
    corecore