2,629 research outputs found
Multidimensional measurement within adult protective services: design and initial testing of the tool for risk, interventions, and outcomes.
This study describes the development, field utility, reliability, and validity of the multidimensional Tool for Risk, Interventions, and Outcomes (TRIO) for use in Adult Protective Services (APS). The TRIO is designed to facilitate consistent APS practice and collect data related to multiple dimensions of typical interactions with APS clients, including the investigation and assessment of risks, the provision of APS interventions, and associated health and safety outcomes. Initial tests of the TRIO indicated high field utility, social worker "relevance and buy-in," and inter-rater reliability. TRIO concurrent validity was demonstrated via appropriate patterns of TRIO item differentiation based on the type of observed confirmed abuse or neglect; and predictive validity was demonstrated by prediction of the risk of actual APS recurrence. The TRIO is a promising new tool that can help meet the challenges of providing and documenting effective APS practices and identifying those at high risk for future APS recurrence
Team Coordination Dynamics of Winning NBA Teams
Predicting sports games outcomes is an endless pursuit shared by stakeholders ranging from fans to coaches to data scientists. We have begun investigating the value of positional data recorded during basketball gameplay with the goal of predicting outcomes from team dynamics as they emerge. We approached this problem by analyzing the “shape” of team movements on the court and investigated whether team dynamics in NBA games mimicked long-range correlated patterns observed in other team contexts. We analyzed 622 NBA games from an archival data set, including all area time series obtained for each of the four quarters. We fit a linear mixed-effects model with normalized α or percent determinism, as the outcome variable, and a fixed effect of win/loss and random team effects (i.e., random intercepts). These preliminary results suggest that analyzing positional data using time series data may provide meaningful information relating to game outcomes and team coordination dynamics
Thermodynamic Entropy And The Accessible States of Some Simple Systems
Comparison of the thermodynamic entropy with Boltzmann's principle shows that
under conditions of constant volume the total number of arrangements in simple
thermodynamic systems with temperature-independent heat capacities is TC/k. A
physical interpretation of this function is given for three such systems; an
ideal monatomic gas, an ideal gas of diatomic molecules with rotational motion,
and a solid in the Dulong-Petit limit of high temperature. T1/2 emerges as a
natural measure of the number of accessible states for a single particle in one
dimension. Extension to N particles in three dimensions leads to TC/k as the
total number of possible arrangements or microstates. The different microstates
of the system are thus shown a posteriori to be equally probable, with
probability T-C/k, which implies that for the purposes of counting states the
particles of the gas are distinguishable. The most probable energy state of the
system is determined by the degeneracy of the microstates.Comment: 9 pages, 1 figur
Some Remarks about Variable Mass Systems
We comment about the general argument given to obtain the rocket equation as
it is exposed in standard textbooks. In our opinion, it can induce students to
a wrong answer when solving variable mass problems.Comment: 2 page
Sommerfeld's image method in the calculation of van der Waals forces
We show how the image method can be used together with a recent method
developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals
interaction between an atom and a perfectly conducting surface of arbitrary
shape. We discuss in detail the case of an atom and a semi- infinite conducting
plane. In order to employ the above procedure to this problem it is necessary
to use the ingenious image method introduced by Sommerfeld more than one
century ago, which is a generalization of the standard procedure. Finally, we
briefly discuss other interesting situations that can also be treated by the
joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory
under the Influence of External Conditions (QFEXT11
Radiative damping: a case study
We are interested in the motion of a classical charge coupled to the Maxwell
self-field and subject to a uniform external magnetic field, B. This is a
physically relevant, but difficult dynamical problem, to which contributions
range over more than one hundred years. Specifically, we will study the
Sommerfeld-Page approximation which assumes an extended charge distribution at
small velocities. The memory equation is then linear and many details become
available. We discuss how the friction equation arises in the limit of "small"
B and contrast this result with the standard Taylor expansion resulting in a
second order equation for the velocity of the charge.Comment: 4 figure
Charge Fluctuations in the Edge States of N-S hybrid Nano-Structures
In this work we show how to calculate the equilibrium and non-equilibrium
charge fluctuations in a gated normal mesoscopic conductor which is attached to
one normal lead and one superconducting lead. We then consider an example where
the structure is placed in a high magnetic field, such that the transport is
dominated by edge states. We calculate the equilibrium and non-equilibrium
charge fluctuations in the gate, for a single edge state, comparing our results
to those for the same system, but with two normal leads. We then consider the
specific example of a quantum point contact and calculate the charge
fluctuations in the gate for more than one edge state.Comment: 4 pages with 1 figure. In published version the high magnetic field
dynamics of the holes is treated incorrectly. An erratum is in preparatio
Changes in human walking dynamics induced by uneven terrain are reduced with ongoing exposure, but a higher variability persists
During walking, uneven terrain alters the action of the ground reaction force from stride to stride. The extent to which such environmental inconsistencies are withstood may be revealed by the regulation of whole-body angular momentum (L) during walking. L quantifies the balance of momenta of the body segments (thigh, trunk, etc.) about their combined center of mass, and remains close to zero during level walking. A failure to constrain L has been linked to falls. The aim of this study was to explore the ability of young adults to orchestrate their movement on uneven terrain, illustrated by the range of L (LR) and its variability (vLR). In eleven male adults, we observed significant increases in sagittal plane LR, and vLR in all three planes of motion during walking on an uneven in comparison to a flat surface. No reductions in these measures were observed within a 12-minute familiarisation period, suggesting that unimpaired adults either are unable to, or do not need to eliminate the effects of uneven terrain. Transverse plane LR, in contrast, was lower on immediate exposure, and then increased, pointing to the development of a less restrictive movement pattern, and would support the latter hypothesis
Diffractive orbits in isospectral billiards
Isospectral domains are non-isometric regions of space for which the spectra
of the Laplace-Beltrami operator coincide. In the two-dimensional Euclidean
space, instances of such domains have been given. It has been proved for these
examples that the length spectrum, that is the set of the lengths of all
periodic trajectories, coincides as well. However there is no one-to-one
correspondence between the diffractive trajectories. It will be shown here how
the diffractive contributions to the Green functions match nevertheless in a
''one-to-three'' correspondence.Comment: 20 pages, 6 figure
- …