237 research outputs found

    AMP-activated protein kinase controls liposaccharide-induced hyperpermeability

    Get PDF
    Organ dysfunction determines the severity of sepsis and is correlated to mortality. Endothelial increased permeability contributes to the development of organ failure. AMP-activated protein kinase (AMPK) has been shown to modulate cytoskeleton and could mediate endothelial permeability. Our hypothesis is that AMPK controls sepsis-induced hyperpermeability in the heart and is involved in septic cardiomyopathy. Sepsis was induced by intraperitoneal injection of liposaccharide, 10 mg/kg (LPS). Alpha-1 AMPK knockout mice (α1KO) were compared with wild-type. Vascular permeability was characterized by Evans blue extravasation. Inflammatory cytokine mRNA expression was determined by qPCR analysis. Left ventricular mass was assessed by echocardiography. In addition, to emphasize the beneficial role of AMPK on heart vascular permeability, AMPK activator (acadesine) was administered to C57Bl6 mice before LPS injection. The ANOVA test with Bonferroni's post hoc test and the log-rank test were used. P < 0.05 was considered as significant. Increased cardiac vascular permeability was observed in the LPS group in comparison to untreated animals (2.5% vs. 16%; P < 0.05). The α1KO mice exhibited an increase vascular permeability after LPS injection in comparison to wild-type mice (41.5% vs. 16%; P < 0.05). α1KO animals had a significant mortality increase after LPS injection (70% vs. 10%; P < 0.05). LPS markedly induced the production of proinflammatory cytokines (TNFα, IL-1β, IL-6) that were significantly higher in the α1KO animals. More importantly, LPS treatment leads to an increased left ventricular mass in the α1KO mice within 24 hours, suggesting the onset of edema. Finally LPS-induced vascular hyperpermeability was greatly reduced after AMPK activation by acadesine (13.2% vs. 40%; P < 0.05). AMPK importantly regulates cardiac vascular permeability and could control the sepsis-induced cardiomyopathy. AMPK could represent a new pharmacological target of sepsis

    The Role of the United Nations in the Maintenance of Peace before and after the Year Two Thousand

    Full text link
    Two-day conference on United Nations held at the University of Georgia School of Law on March 3 and 4, 1995. The conference consisted of three panels ( United States attitudes on the role of the United Nations regarding the maintenance and the restoration of peace, Global attitudes on the role of the United Nations on the maintenance and restoration of peace, and The role of the United Nations with respect to the means for accomplishing the maintenance and restoration of peace ). Included dinner remarks by Louis B. Sohn

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    IFN-Lambda (IFN-λ) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo

    Get PDF
    Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-α/β (type I IFN) and IFN-λ (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-α/β and IFN-λ systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-λ. In the brain, IFN-α/β was readily produced after infection with various RNA viruses, whereas expression of IFN-λ was low in this organ. In the liver, virus infection induced the expression of both IFN-α/β and IFN-λ genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-α/β and IFN-λ to be compared. The response to IFN-λ correlated with expression of the α subunit of the IFN-λ receptor (IL-28Rα). The IFN-λ response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-λ in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-α/β was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-λ system probably evolved to specifically protect epithelia. IFN-λ might contribute to the prevention of viral invasion through skin and mucosal surfaces

    HHV-6B Induces IFN-Lambda1 Responses in Cord Plasmacytoid Dendritic Cells through TLR9

    Get PDF
    Human herpesvirus type 6B (HHV-6B) is a strong inducer of IFN-alpha and has the capacity to promote Th1 responses and block Th2 responses in vitro. In this study we addressed whether inactivated HHV-6B can also induce IFN lambda responses and to what extent interferons alpha and lambda affect Th1/Th2 polarization. We show that inactivated HHV-6B induced IFN-lambda1 (IL-29) but not IFN-lambda2 (IL-28A) responses in plasmacytoid DC and that this induction was mediated through TLR9. We have previously shown that HHV-6B promotes Th1 responses and blocks Th2 responses in both humans and mice. We now show that neutralization of IFN-alpha but not IFN-lambda1 blocked the HHV-6B-induced enhancement of Th1 responses in MLR, but did not affect the HHV-6-induced dampening of Th2 responses. Similarly, blockage of TLR9 counteracted HHV-6Bs effects on the Th1/Th2 balance. In addition, IFN-alpha but not IFN-lambda1 promoted IFN-gamma production and blocked IL-5 and IL-13 production in purified CD4+ T-cells. The lack of effect of IFN-lambda1 correlated with the absence of the IFN-lambda receptor IL-28Ralfa chain on the cell surface of both resting and activated CD4+ T-cells. We conclude that inactivated HHV-6B is a strong inducer of IFN-lambda1 in plasmacytoid DC and that this induction is TLR9-dependent. However, human CD4+ T-cells do not express the IFN-lambda receptor and are refractory to IFN-lambda1 treatment. The HHV-6B-induced alterations in the Th1/Th2 balance are instead mediated mainly through TLR9 and IFN-alpha

    New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells

    Get PDF
    Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner.We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs.Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility for virus propagation

    Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility

    Get PDF
    Rotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model. Expression of the innate immune receptor for viral dsRNA, Toll-like receptor (Tlr) 3 was low in the epithelium of suckling mice but strongly increased during the postnatal period inversely correlating with rotavirus susceptibility, viral shedding and histological damage. Adult mice deficient in Tlr3 (Tlr3−/−) or the adaptor molecule Trif (TrifLps2/Lps2) exerted significantly higher viral shedding and decreased epithelial expression of proinflammatory and antiviral genes as compared to wild-type animals. In contrast, neonatal mice deficient in Tlr3 or Trif did not display impaired cell stimulation or enhanced rotavirus susceptibility. Using chimeric mice, a major contribution of the non-hematopoietic cell compartment in the Trif-mediated antiviral host response was detected in adult animals. Finally, a significant age-dependent increase of TLR3 expression was also detected in human small intestinal biopsies. Thus, upregulation of epithelial TLR3 expression during infancy might contribute to the age-dependent susceptibility to rotavirus infection

    USP18-Based Negative Feedback Control Is Induced by Type I and Type III Interferons and Specifically Inactivates Interferon α Response

    Get PDF
    Type I interferons (IFN) are cytokines that are rapidly secreted upon microbial infections and regulate all aspects of the immune response. In humans 15 type I IFN subtypes exist, of which IFN α2 and IFN β are used in the clinic for treatment of different pathologies. IFN α2 and IFN β are non redundant in their expression and in their potency to exert specific bioactivities. The more recently identified type III IFNs (3 IFN λ or IL-28/IL-29) bind an unrelated cell-type restricted receptor. Downstream of these two receptor complexes is a shared Jak/Stat pathway. Several mechanisms that contribute to the shut down of the IFN-induced signaling have been described at the molecular level. In particular, it has long been known that type I IFN induces the establishment of a desensitized state. In this work we asked how the IFN-induced desensitization integrates into the network built by the multiple type I IFN subtypes and type III IFNs. We show that priming of cells with either type I IFN or type III IFN interferes with the cell's ability to further respond to all IFN α subtypes. Importantly, primed cells are differentially desensitized in that they retain sensitivity to IFN β. We show that USP18 is necessary and sufficient to induce differential desensitization, by impairing the formation of functional binding sites for IFN α2. Our data highlight a new type of differential between IFNs α and IFN β and underline a cross-talk between type I and type III IFN. This cross-talk could shed light on the reported genetic variation in the IFN λ loci, which has been associated with persistence of hepatitis C virus and patient's response to IFN α2 therapy

    IL28B Genetic Variation Is Associated with Spontaneous Clearance of Hepatitis C Virus, Treatment Response, Serum IL-28B Levels in Chinese Population

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The interleukin-28B gene (IL28B) locus has been associated with host resistance to hepatitis C virus (HCV) infection and response to PEG-IFN/RBV treatment in western populations. This study was to determine whether this gene variant is also associated with spontaneous clearance of HCV infection, treatment response and IL-28B protein production in Chinese patients.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; We genotyped IL28B genetic variations (rs12980275, rs8103142, rs8099917 and rs12979860) by pyrosequencing DNA samples from cohorts consisting of 529 subjects with persistent HCV infection, 196 subjects who cleared the infection, 171 healthy individuals and 235 chronic HCV patients underwent IFN/RBV treatment. The expression of IL-28B were measured by ELISA and RT-PCR.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; We found that the four IL28B variants were in complete linkage disequilibrium (r2 = 0.97–0.98). The rs12979860 CC genotype was strongly associated with spontaneously HCV clearance and successful IFN/RBV treatment compared to the CT/TT. IL-28B levels in persistent HCV patients were significantly lower than subjects who spontaneously resolved HCV and healthy controls and were also associated with high levels of ALT (alanine aminotransferase) and AST (aspartate aminotransferase). IL-28B levels were also significantly lower in individuals carrying T alleles than CC homozygous.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Thus, the rs12979860-CC variant upstream of IL28B gene is associated with spontaneous clearance of HCV, susceptible to IFN/RBV treatment and increased IL-28B levels in this Chinese population.&lt;/p&gt
    • …
    corecore