375 research outputs found

    Heavy quark action on the anisotropic lattice

    Get PDF
    We investigate the O(a)O(a) improved quark action on anisotropic lattice as a potential framework for the heavy quark, which may enable precision computation of hadronic matrix elements of heavy-light mesons. The relativity relations of heavy-light mesons as well as of heavy quarkonium are examined on a quenched lattice with spatial lattice cutoff aσ1a_\sigma^{-1} \simeq 1.6 GeV and the anisotropy ξ=4\xi=4. We find that the bare anisotropy parameter tuned for the massless quark describes both the heavy-heavy and heavy-light mesons within 2% accuracy for the quark mass aσmQ<0.8a_\sigma m_Q < 0.8, which covers the charm quark mass. This bare anisotropy parameter also successfully describes the heavy-light mesons in the quark mass region aσmQ1.2a_\sigma m_Q \leq 1.2 within the same accuracy. Beyond this region, the discretization effects seem to grow gradually. The anisotropic lattice is expected to extend by a factor ξ\xi the quark mass region in which the parameters in the action tuned for the massless limit are applicable for heavy-light systems with well controlled systematic errors.Comment: 11 pages, REVTeX4, 11 eps figure

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light νt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    Numerical study of O(a) improved Wilson quark action on anisotropic lattice

    Get PDF
    The O(a)O(a) improved Wilson quark action on the anisotropic lattice is investigated. We carry out numerical simulations in the quenched approximation at three values of lattice spacing (aσ1=1a_{\sigma}^{-1}=1--2 GeV) with the anisotropy ξ=aσ/aτ=4\xi=a_{\sigma}/a_{\tau}=4, where aσa_{\sigma} and aτa_{\tau} are the spatial and the temporal lattice spacings, respectively. The bare anisotropy γF\gamma_F in the quark field action is numerically tuned by the dispersion relation of mesons so that the renormalized fermionic anisotropy coincides with that of gauge field. This calibration of bare anisotropy is performed to the level of 1 % statistical accuracy in the quark mass region below the charm quark mass. The systematic uncertainty in the calibration is estimated by comparing the results from different types of dispersion relations, which results in 3 % on our coarsest lattice and tends to vanish in the continuum limit. In the chiral limit, there is an additional systematic uncertainty of 1 % from the chiral extrapolation. Taking the central value γF=γF\gamma_F=\gamma_F^* from the result of the calibration, we compute the light hadron spectrum. Our hadron spectrum is consistent with the result by UKQCD Collaboration on the isotropic lattice. We also study the response of the hadron spectrum to the change of anisotropic parameter, γFγF+δγF\gamma_F \to \gamma_F^* + \delta\gamma_F. We find that the change of γF\gamma_F by 2 % induces a change of 1 % in the spectrum for physical quark masses. Thus the systematic uncertainty on the anisotropic lattice, as well as the statistical one, is under control.Comment: 27 pages, 25 eps figures, LaTe

    Nucleon mass, sigma term and lattice QCD

    Full text link
    We investigate the quark mass dependence of the nucleon mass M_N. An interpolation of this observable, between a selected set of fully dynamical two-flavor lattice QCD data and its physical value, is studied using relativistic baryon chiral perturbation theory up to order p^4. In order to minimize uncertainties due to lattice discretization and finite volume effects our numerical analysis takes into account only simulations performed with lattice spacings a5. We have also restricted ourselves to data with m_pi<600 MeV and m_sea=m_val. A good interpolation function is found already at one-loop level and chiral order p^3. We show that the next-to-leading one-loop corrections are small. From the p^4 numerical analysis we deduce the nucleon mass in the chiral limit, M_0 approx 0.88 GeV, and the pion-nucleon sigma term sigma_N= (49 +/- 3) MeV at the physical value of the pion mass.Comment: 12 pages, 4 figures, revised journal versio

    Accurate Scale Determinations for the Wilson Gauge Action

    Get PDF
    Accurate determinations of the physical scale of a lattice action are required to check scaling and take the continuum limit. We present a high statistics study of the static potential for the SU(3) Wilson gauge action on coarse lattices (5.54β6.05.54 \leq \beta \leq 6.0). Using an improved analysis procedure we determine the string tension and the Sommer scale r0r_0 (and related quantities) to 1% accuracy, including all systematic errors. Combining our results with earlier ones on finer lattices, we present parameterizations of these quantities that should be accurate to about 1% for 5.6β6.55.6 \leq \beta \leq 6.5. We estimate the \La-parameter of quenched QCD to be \La_\MSb = 247(16) MeV.Comment: 18 pages, LaTeX, 5 ps files (corrected typo in table 5, updated references

    Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    Get PDF
    Using tadpole inproved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios \chi_0=4,6,10 and inverse lattice spacing in the range a_s^{-1}=660-840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size, L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L=\infty. The renormalized anisotropy \chi_R was measured using both the torelon dispersion relation and the sideways potential method. We found good agreement between these different approaches. Any discrepancy was at worst 3-4% which is consistent with the effect of lattice artifacts that for the torelon we estimate as O(\a_Sa_s^2/R^2) where R is the flux-tube radius. We also present some new data that suggests that rotational invariance is established more accurately for the mean-link action than the plaquette action.Comment: LaTeX 18 pages including 7 figure

    Charmonium Spectrum from Quenched Anisotropic Lattice QCD

    Get PDF
    We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters ζ=Kt/Ks\zeta=K_t/K_s and the clover coefficients cs,tc_{s,t}, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing ξ=as/at=3\xi = a_s/a_t = 3 anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range asa_s=0.07-0.2 fm. The clover coefficients cs,tc_{s,t} are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters ζ\zeta, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P1S1P-1S splitting, the deviation from the experimental value is estimated to be \sim30% for the S-state hyperfine splitting and \sim20% for the P-state fine structure. Our results are consistent with previous results at ξ=2\xi = 2 obtained by Chen when the lattice spacing is determined from the Sommer scale r0r_0. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in Physical Review

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.

    Two flavors of dynamical quarks on anisotropic lattices

    Get PDF
    We report on our study of two-flavor full QCD on anisotropic lattices using O(a)O(a)-improved Wilson quarks coupled with an RG-improved glue. The bare gauge and quark anisotropies corresponding to the renormalized anisotropy ξ=as/at=2\xi=a_s/a_t = 2 are determined as functions of β\beta and κ\kappa, which covers the region of spatial lattice spacings as0.28a_s\approx 0.28--0.16 fm and mPS/mV0.6m_{PS}/m_V\approx 0.6--0.9. The calibrations of the bare anisotropies are performed with the Wilson loop and the meson dispersion relation at 4 lattice cutoffs and 5--6 quark masses. Using the calibration results we calculate the meson mass spectrum and the Sommer scale r0r_0. We confirm that the values of r0r_0 calculated for the calibration using pseudo scalar and vector meson energy momentum dispersion relation coincide in the continuum limit within errors. This work serves to lay ground toward studies of heavy quark systems and thermodynamics of QCD including the extraction of the equation of state in the continuum limit using Wilson-type quark actions.Comment: 16 pages, 23 figures, Version accepted for publication in Physical Review

    Quenched charmonium spectrum

    Full text link
    We study charmonium using the standard relativistic formalism in the quenched approximation, on a set of lattices with isotropic lattice spacings ranging from 0.1 to 0.04 fm. We concentrate on the calculation of the hyperfine splitting between eta_c and J/psi, aiming for a controlled continuum extrapolation of this quantity. The splitting extracted from the non-perturbatively improved clover Dirac operator shows very little dependence on the lattice spacing for a0.1a \leq 0.1 fm. The dependence is much stronger for Wilson and tree-level improved clover operators, but they still yield consistent extrapolations if sufficiently fine lattices, a0.07a \leq 0.07 fm (aM(ηc)1a M(\eta_c) \leq 1), are used. Our result for the hyperfine splitting is 77(2)(6) MeV (where Sommer's parameter, r_0, is used to fix the scale). This value remains about 30% below experiment. Dynamical fermions and OZI-forbidden diagrams both contribute to the remainder. Results for the eta_c and J/psi wave functions are also presented.Comment: 22 pages, 7 figure
    corecore