305 research outputs found

    Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Get PDF
    Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG), which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    A mathematical model of the metabolic and perfusion effects on cortical spreading depression

    Full text link
    Cortical spreading depression (CSD) is a slow-moving ionic and metabolic disturbance that propagates in cortical brain tissue. In addition to massive cellular depolarization, CSD also involves significant changes in perfusion and metabolism -- aspects of CSD that had not been modeled and are important to traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine. In this study, we develop a mathematical model for CSD where we focus on modeling the features essential to understanding the implications of neurovascular coupling during CSD. In our model, the sodium-potassium--ATPase, mainly responsible for ionic homeostasis and active during CSD, operates at a rate that is dependent on the supply of oxygen. The supply of oxygen is determined by modeling blood flow through a lumped vascular tree with an effective local vessel radius that is controlled by the extracellular potassium concentration. We show that during CSD, the metabolic demands of the cortex exceed the physiological limits placed on oxygen delivery, regardless of vascular constriction or dilation. However, vasoconstriction and vasodilation play important roles in the propagation of CSD and its recovery. Our model replicates the qualitative and quantitative behavior of CSD -- vasoconstriction, oxygen depletion, extracellular potassium elevation, prolonged depolarization -- found in experimental studies. We predict faster, longer duration CSD in vivo than in vitro due to the contribution of the vasculature. Our results also help explain some of the variability of CSD between species and even within the same animal. These results have clinical and translational implications, as they allow for more precise in vitro, in vivo, and in silico exploration of a phenomenon broadly relevant to neurological disease.Comment: 17 pages including 9 figures, accepted by PLoS On

    Synesthesia and Migraine: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Synesthesia is, as visual migraine aura, a common and fascinating perceptual phenomenon. Here we present a unique case with synesthesias exclusively during visual migraine auras.</p> <p>Case presentation</p> <p>A 40-year-old woman with a cyclic mood disorder had suffered from migraine with visual aura for several years. On several occasions she had experienced "mixing of senses" during the aura phase. Staring at strong bright light she could experience intense taste of lemon with flow from the salivary glands.</p> <p>Conclusion</p> <p>Acquired synesthesia, exclusively coincident with migraine aura, gives support to the idea of an anomalous cortical processing underlying the phenomenon.</p

    Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin

    Get PDF
    Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression

    Potassium modulation of methionine uptake in astrocytes in vitro

    Full text link
    Methionine participates in a large variety of metabolic pathways in brain, and its transport may play an important regulatory role. The properties of methionine uptake were examined in a preparation of neonatal rat brain astrocytes. Uptake is linear for 15 minutes, up to 2.5 μM. At steady state conditions, methionine is concentrated 30–50-fold. Measured methionine homoexchange accounts for a significant fraction of uptake at concentrations greater than 10 μM. We recently reported that methionine uptake is decreased by elevations in extracellular K + . Potassium induced efflux cannot account for this apparent effect; and thus for concentrations less than 2.5μM, and for short times of incubation, measured rates of methionine uptake represent unidirectional flux. At extracellular concentrations of K + equal to 6.9 mM, the apparent V max of methionine transport is 182 pmol/min/mg protein, and the K m is 1.3 μM. Where K + is shifted to 11.9 mM, the K m remains unchanged, and the V max is reduced by half.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45429/1/11064_2004_Article_BF00965129.pd

    Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex

    Get PDF
    Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive

    Assimilating Seizure Dynamics

    Get PDF
    Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics

    Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions

    Get PDF
    A rat cortical spreading depression (CSD) model was established to explore whether cerebral mitochondria injury was induced by CSD under both normoxic and hypoxic conditions and whether flunarizine had a protective effect on cerebral mitochondria. SD rats, which were divided into seven groups, received treatment as follows: no intervention (control Group I); 1 M NaCl injections (Group II); 1 M KCl injections (Group III); intraperitoneal flunarizine (3 mg/kg) 30 min before KCl injections (Group IV); 14% O2 inhalation before NaCl injections (Group V); 14% O2 inhalation followed by KCl injections (Group VI); 14% O2 inhalation and intraperitoneal flunarizine followed by KCl injections (Group VII). Following treatment, brains were removed for the analysis of mitochondria transmembrane potential (MMP) and oxidative respiratory function after recording the number, amplitude and duration of CSD. The duration of CSD was significantly longer in Group VI than that in Group III. The number and duration of CSD in Group VII was significantly lower than that in Group VI. MMP in Group VI was significantly lower than that in Group III, and MMP in Group VII was significantly higher than that in Group VI. State 4 respiration in Group VI was significantly higher than that in Group III, and state 3 respiration in Group VII was significantly higher than that in Group VI. Respiration control of rate in Group VII was also significantly higher than that in Group VI. Thus, we concluded that aggravated cerebral mitochondria injury might be attributed to CSD under hypoxic conditions. Flunarizine can alleviate such cerebral mitochondria injury under both normoxic and hypoxic conditions
    corecore