361 research outputs found

    The diverse roles of mononuclear phagocytes in prion disease pathogenesis

    Get PDF
    Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain

    The Antibacterial Activity of Honey Derived from Australian Flora

    Get PDF
    Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57%) of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla), jarrah (Eucalyptus marginata) and jellybush (Leptospermum polygalifolium). In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8%) samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4°C than at 25°C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25°C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted

    The Galaxy Structure-Redshift Relationship

    Full text link
    There exists a gradual, but persistent, evolutionary effect in the galaxy population such that galaxy structure and morphology change with redshift. This galaxy structure-redshift relationship is such that an increasingly large fraction of all bright and massive galaxies at redshifts 2 < z < 3 are morphologically peculiar at wavelengths from rest-frame ultraviolet to rest-frame optical. There are however examples of morphologically selected spirals and ellipticals at all redshifts up to z ~ 3. At lower redshift, the bright galaxy population smoothly transforms into normal ellipticals and spirals. The rate of this transformation strongly depends on redshift, with the swiftest evolution occurring between 1 < z < 2. This review characterizes the galaxy structure-redshift relationship, discusses its various physical causes, and how these are revealing the mechanisms responsible for galaxy formation.Comment: 20 pages, 8 figures. Invited Review to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes A New Note", ed. D. Block et a

    Isolation of two distinct prion strains from a scrapie-affected sheep

    Get PDF
    We performed a transmission study using mice to clarify the characteristics of the most recent case of scrapie in Japan. The mice that were inoculated with the brain homogenate from a scrapie-affected sheep developed progressive neurological disease, and one of the scrapie-affected mice showed unique clinical signs during primary transmission. This mouse developed obesity, polydipsia, and polyuria. In contrast, the other affected mice exhibited weight loss and hypokinesia. In subsequent passages, the mice showed distinct characteristic scrapie phenotypes. This finding may prove that different prion strains coexist in a naturally affected sheep with scrapie

    Microdissection: A method developed to investigate mechanisms involved in transmissible spongiform encephalopathy pathogenesis

    Get PDF
    BACKGROUND: The transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting both human and animals. The neuroanatomical changes which occur in the central nervous system (CNS) of TSE infected animals include vacuolation, gliosis, neuronal loss and the deposition of a disease specific protein, PrP(Sc). Experimental murine models of scrapie, a TSE of sheep, have revealed that pathology may be confined to specific brain areas with targeting of particular neuronal subsets depending on route of injection and scrapie isolate. To assess the biochemical changes which are taking place in these targeted areas it was necessary to develop a reliable sampling procedure (microdissection) which could be used for a variety of tests such as western blotting and magnetic resonance spectroscopy. METHODS: The method described is for the microdissection of murine brains. To assess the usefulness of this dissection technique for producing similar sample types for analysis by various down-stream biochemical techniques, the areas dissected were analysed for PrP(Sc )by western blotting and compared to immunocytochemical (ICC) techniques. RESULTS: Results show that the method generates samples yielding a consistent protein content which can be analysed for PrP(Sc). The areas in which PrP(Sc )is found by western blotting compares well with localisation visualised by immunocytochemistry. CONCLUSION: The microdisssection method described can be used to generate samples suitable for a range of biochemical techniques. Using these samples a range of assays can be carried out which will help to elucidate the molecular and cellular mechanisms underlying TSE pathogenesis. The method would also be useful for any study requiring the investigation of discrete areas within the murine brain

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    Get PDF
    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    BSE can propagate in sheep co-infected or pre-infected with scrapie

    Get PDF
    To understand the possible role of mixed-prion infections in disease presentation, the current study reports the co-infection of sheep with bovine spongiform encephalopathy (BSE) and scrapie. The bovine BSE agent was inoculated subcutaneously into sheep with ARQ/ARQ or VRQ/ARQ PRNP genotypes either at the same time as subcutaneous challenge with scrapie, or three months later. In addition, VRQ/VRQ sheep naturally infected with scrapie after being born into a scrapie-affected flock were challenged subcutaneously with BSE at eight or twenty one months-of-age. Sheep were analysed by incubation period/attack rate, and western blot of brain tissue determined the presence of BSE or scrapie-like PrP Sc. Serial protein misfolding cyclic amplification (sPMCA) that can detect very low levels of BSE in the presence of an excess of scrapie agent was also applied to brain and lymphoreticular tissue. For VRQ/ARQ sheep challenged with mixed infections, scrapie-like incubation periods were produced, and no BSE agent was detected. However, whilst ARQ/ARQ sheep developed disease with BSE-like incubation periods, some animals had a dominant scrapie western blot phenotype in brain, but BSE was detected in these sheep by sPMCA. In addition, VRQ/VRQ animals challenged with BSE after natural exposure to scrapie had scrapie-like incubation periods and dominant scrapie PrP Sc in brain, but one sheep had BSE detectable by sPMCA in the brain. Overall, the study demonstrates for the first time that for scrapie/BSE mixed infections, VRQ/ARQ sheep with experimental scrapie did not propagate BSE but VRQ/VRQ sheep with natural scrapie could propagate low levels of BSE, and whilst BSE readily propagated in ARQ/ARQ sheep it was not always the dominant PrP Sc strain in brain tissue. Indeed, for several animals, a dominant scrapie biochemical phenotype in brain did not preclude the presence of BSE prion
    corecore