98 research outputs found

    A sensitive 301V BSE serial PMCA assay

    Get PDF
    The prion strain 301V, is a mouse passaged form of bovine spongiform encephalopathy (BSE). It has been used as a model of BSE for more than 20 years, in particular in the investigation of tissue distribution of infectivity, the molecular phenotype and transmission properties of BSE, strain typing assays and prion inactivation studies. Most 301V experiments have required murine bioassay as a method for the quantitation of infectivity. To date this model strain has not been studied with the protein misfolding cyclic amplification assay (PMCA) which detects prion-associated PrPSc protein. The detection of BSE PrPSc by PMCA can be more sensitive than mouse bioassay and is carried out in a much shorter time frame of days as opposed to months/years. Here, we describe the development of a new highly sensitive and specific PMCA assay for murine 301V and assess the sensitivity of the assay in direct comparison with murine bioassay of the same material. This in vitro assay detected, in a few days, 301V at a brain dilution of at least 1x10-9, compared to bioassay of the same material in VM mice that could detect down to a 1x10-8 dilution and took >180 days. The 301V PMCA may therefore offer a faster and more sensitive alternative to live animal bioassay when studying the BSE agent in VM mice

    BSE infectivity survives burial for five years with only limited spread

    Get PDF
    © 2019, The Author(s). The carcasses of animals infected with bovine spongiform encephalopathy (BSE), scrapie or chronic wasting disease (CWD) that remain in the environment (exposed or buried) may continue to act as reservoirs of infectivity. We conducted two experiments under near-field conditions to investigate the survival and dissemination of BSE infectivity after burial in a clay or sandy soil. BSE infectivity was either contained within a bovine skull or buried as an uncontained bolus of BSE-infected brain. Throughout the five-year period of the experiment, BSE infectivity was recovered in similar amounts from heads exhumed annually from both types of soil. Very low levels of infectivity were detected in the soil immediately surrounding the heads, but not in samples remote from them. Similarly, there was no evidence of significant lateral movement of infectivity from the buried bolus over 4 years although there was a little vertical movement in both directions. However, bioassay analysis of limited numbers of samples of rain water that had drained through the bolus clay lysimeter indicated that infectivity was present in filtrates. sPMCA analysis also detected low levels of PrP Sc in the filtrates up to 25 months following burial, raising the concern that leakage of infectivity into ground water could occur. We conclude that transmissible spongiform encephalopathy infectivity is likely to survive burial for long periods of time, but not to migrate far from the site of burial unless a vector or rain water drainage transports it. Risk assessments of contaminated sites should take these findings into account

    PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment

    Get PDF
    From 2002 to 2004 (years five and six of a ten-year funding cycle), the PEER Center organized the majority of its research around six testbeds. Two buildings and two bridges, a campus, and a transportation network were selected as case studies to “exercise” the PEER performance-based earthquake engineering methodology. All projects involved interdisciplinary teams of researchers, each producing data to be used by other colleagues in their research. The testbeds demonstrated that it is possible to create the data necessary to populate the PEER performancebased framing equation, linking the hazard analysis, the structural analysis, the development of damage measures, loss analysis, and decision variables. This report describes one of the building testbeds—the UC Science Building. The project was chosen to focus attention on the consequences of losses of laboratory contents, particularly downtime. The UC Science testbed evaluated the earthquake hazard and the structural performance of a well-designed recently built reinforced concrete laboratory building using the OpenSees platform. Researchers conducted shake table tests on samples of critical laboratory contents in order to develop fragility curves used to analyze the probability of losses based on equipment failure. The UC Science testbed undertook an extreme case in performance assessment—linking performance of contents to operational failure. The research shows the interdependence of building structure, systems, and contents in performance assessment, and highlights where further research is needed. The Executive Summary provides a short description of the overall testbed research program, while the main body of the report includes summary chapters from individual researchers. More extensive research reports are cited in the reference section of each chapter

    Habitable Exoplanet Observatory (HabEx)

    Get PDF
    The Habitable-Exoplanet Observatory (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The first HabEx mission concept that has been studied is a large (~4m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near ulttraviolet and near infrared domains. We report here on our team’s efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA’s expected budgetary envelope, and timely for the next decade. We also briefly discuss our plans to explore less ambitious, descoped missions relative to the primary mission architecture discussed here

    Threats posed to conservation by media misinformation

    Get PDF
    Media coverage of trophy hunting highlights the potential for misinformation to enter public and political debates on conservation issues. We argue that misinformation should be a major concern for all involved in conservation

    The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements

    Get PDF
    HabEx is one of four candidate flagship missions being studied in detail by NASA, to be submitted for consideration to the 2020 Decadal Survey in Astronomy and Astrophysics for possible launch in the 2030s. It will be optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and will also enable a wide range of general astrophysics science. HabEx aims to fully characterize planetary systems around nearby solar-type stars for the first time, including rocky planets, possible water worlds, gas giants, ice giants, and faint circumstellar debris disks. In particular, it will explore our nearest neighbors and search for signs of habitability and biosignatures in the atmospheres of rocky planets in the habitable zones of their parent stars. Such high spatial resolution, high contrast observations require a large (roughly greater than 3.5m), stable, and diffraction-limited optical space telescope. Such a telescope also opens up unique capabilities for studying the formation and evolution of stars and galaxies. We present some preliminary science objectives identified for HabEx by our Science and Technology Definition Team (STDT), together with a first look at the key challenges and design trades ahead

    Habitable Exoplanet Observatory (HabEx)

    Get PDF
    The Habitable-Exoplanet Observatory (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The first HabEx mission concept that has been studied is a large (~4m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near ulttraviolet and near infrared domains. We report here on our team’s efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA’s expected budgetary envelope, and timely for the next decade. We also briefly discuss our plans to explore less ambitious, descoped missions relative to the primary mission architecture discussed here

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
    corecore