1,398 research outputs found

    Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement

    Get PDF
    The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography. However, the high manufacturing cost and the fact that currently there are no effective ways to place fluorophores only at the gap prevent the use of these structures for enhancing fluorescence-based biochemical assays. We report on the simultaneous modification of fluorescence intensity and lifetime of dye-labeled DNA in the presence of aggregated silver nanoparticles. The nanoparticle aggregates act as efficient plasmonic antennas, leading to more than 2 orders of magnitude enhancement of the average fluorescence. This is comparable to the best-reported fluorescence enhancement for a single molecule but here applies to the average signal detected from all fluorophores in the system. This highlights the remarkable efficiency of this system for surface-enhanced fluorescence. Moreover, we show that the fluorescence intensity enhancement varies with the plasmon resonance position and measure a significant reduction (300×) of the fluorescence lifetime. Both observations are shown to be in agreement with the electromagnetic model of surface-enhanced fluorescence

    Star formation in mergers with cosmologically motivated initial conditions

    Get PDF
    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multi-merger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realisations of twelve merger trees from z=1.5 to z=0. We include the effects of the large hot gaseous halo around all galaxies, following recent obervations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. Firstly, as expected, the star formation rate on long timescales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally we find that the relative size of the starburst, when including the hot halo, is much smaller than previous studies showed. Our simulations also show that the order and timing of interactions are important for the evolution of a galaxy. When multiple galaxies interact at the same time, the SF enhancement is less than when galaxies interact in series. All these effects show the importance of including hot gas and cosmologically motivated merger trees in galaxy evolution models.Comment: 19 pages, 15 figures, 6 tables. Accepted for publication in MNRA

    Hierarchical Bayesian inference of the Initial Mass Function in Composite Stellar Populations

    Get PDF
    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework we use a parameterized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ∼\sim75.Comment: Accepted for publication in MNRAS, 16 pages, 8 figure

    From Discs to Bulges: effect of mergers on the morphology of galaxies

    Get PDF
    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place in the disc too. The inclusion of the hot gas reservoir in the galaxy model contributes to reducing the efficiency of bulge formation. Overall, our findings suggest that mergers are not as efficient as previously thought in transforming discs into bulges. This possibly alleviates some of the tensions between observations of bulgeless galaxies and the hierarchical scenario for structure formation.Comment: MNRAS Accepted, 17 pages, 11 figures, 3 Table

    On the dependence of galaxy morphologies on galaxy mergers

    Get PDF
    The distribution of galaxy morphological types is a key test for models of galaxy formation and evolution, providing strong constraints on the relative contribution of different physical processes responsible for the growth of the spheroidal components. In this paper, we make use of a suite of semi-analytic models to study the efficiency of galaxy mergers in disrupting galaxy discs and building galaxy bulges. In particular, we compare standard prescriptions usually adopted in semi-analytic models, with new prescriptions proposed by Kannan et al., based on results from high-resolution hydrodynamical simulations, and we show that these new implementations reduce the efficiency of bulge formation through mergers. In addition, we compare our model results with a variety of observational measurements of the fraction of spheroid-dominated galaxies as a function of stellar and halo mass, showing that the present uncertainties in the data represent an important limitation to our understanding of spheroid formation. Our results indicate that the main tension between theoretical models and observations does not stem from the survival of purely disc structures (i.e. bulgeless galaxies), rather from the distribution of galaxies of different morphological types, as a function of their stellar mass.Comment: MNRAS in press, 11 pages, 5 figure

    Strong Evolution in the Luminosity-Velocity Relation at z>1?

    Get PDF
    We present a method for constraining the evolution of the galaxy luminosity-velocity (LV) relation in hierarchical scenarios of structure formation. The comoving number density of dark-matter halos with circular velocity of 200 km/s is predicted in favored CDM cosmologies to be nearly constant over the redshift range 0<z<5. Any observed evolution in the density of bright galaxies implies in turn a corresponding evolution in the LV relation. We consider several possible forms of evolution for the zero-point of the LV relation and predict the corresponding evolution in galaxy number density. The Hubble Deep Field suggests a large deficit of bright (M_V < -19) galaxies at 1.4 < z < 2. If taken at face value, this implies a dimming of the LV zero-point by roughly 2 magnitudes. Deep, wide-field, near-IR selected surveys will provide more secure measurements to compare with our predictions.Comment: 4 pages, 2 figures. Submitted to ApJ Letter

    Second harmonic generation with zero phase velocity waves

    No full text
    We design a dual-band nonlinear composite right-left handed transmission line with phase-matching achieved between the fundamental frequency and second harmonic when both interacting waves have zero phase velocity. Additionally, we show that such a transmission line supports a new regime where the generation of backward second harmonic waves is achieved from a backward fundamental frequency wave
    • …
    corecore