9 research outputs found

    Covalent targeting of non-cysteine residues in PI4KIIIβ

    Get PDF
    The synthesis and characterisation of fluorosulfate covalent inhibitors of the lipid kinase PI4KIIIβ is described. The conserved lysine residue located within the ATP binding site was targeted, and optimised compounds based upon reversible inhibitors with good activity and physicochemical profile showed strong reversible interactions and slow onset times for the covalent inhibition, resulting in an excellent selectivity profile for the lipid kinase target. X-Ray crystallography demonstrated a distal tyrosine residue could also be targeted using a fluorosulfate strategy. Combination of this knowledge showed that a dual covalent inhibitor could be developed which reveals potential in addressing the challenges associated with drug resistant mutations

    Investigation of a Bicyclo[1.1.1]pentane as a Phenyl Replacement within an LpPLA<sub>2</sub> Inhibitor

    No full text
    We describe the incorporation of a bicyclo[1.1.1]­pentane moiety within two known LpPLA<sub>2</sub> inhibitors to act as bioisosteric phenyl replacements. An efficient synthesis to the target compounds was enabled with a dichlorocarbene insertion into a bicyclo[1.1.0]­butane system being the key transformation. Potency, physicochemical, and X-ray crystallographic data were obtained to compare the known inhibitors to their bioisosteric counterparts, which showed the isostere was well tolerated and positively impacted on the physicochemical profile

    Fragment-Based Approach to the Development of an Orally Bioavailable Lactam Inhibitor of Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>)

    No full text
    Lp-PLA<sub>2</sub> has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA<sub>2</sub>. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC<sub>50</sub> > 1 mM). The fragment hit was optimized using a variety of structure-based drug design techniques, including virtual screening, fragment merging, and improvement of shape complementarity. A novel series of Lp-PLA<sub>2</sub> inhibitors was generated with low lipophilicity and a promising pharmacokinetic profile

    Production and action of interferons: New insights into molecular mechanisms of gene regulation and expression

    No full text

    In Situ Imaging of Metals in Cells and Tissues

    No full text

    Progression of Geographic Atrophy in Age-related Macular Degeneration

    No full text
    corecore