469 research outputs found

    Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Get PDF
    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we can optimise the device design to suffer minimum impact from radiation damage effects, here using detector development for the SMILE mission to demonstrate the process

    Dwarfing Gene Effects on Coleoptile Length in Pearl Millet

    Get PDF
    The effect of the d2 dwarfing gene on the length of the coleoptile, mesocotyl and plumule was assessed in 12 pairs of isogenic tall/dwarf (d2) inbred lines and 16 pairs of isogenic tall/dwarf hybrids. Culm lengths were measured in replicated field trials in 2 seasons and the lengths of coleoptiles and mesocotyls in seedlings germinated in incubators in the dark at 35°C. Culm length differed significantly between tall and dwarf entries of both inbreds and hybrids but the length of both coleoptile and mesocotyl were similar in both height classes. There were significant differences in coleoptile and mesocotyl lengths among individual entries tested but these were due to parental line or hybrid parent effects. The d2 gene in pearl millet did not affect coleoptile or mesocotyl length as reported for dwarfing genes in other cereals

    Reference Distorted Prices

    Get PDF
    I show that when consumers (mis)perceive prices relative to reference prices, budgets turn out to be soft, prices tend to be lower and the average quality of goods sold decreases. These observations provide explanations for decentralized purchase decisions, for people being happy with a purchase even when they have paid their evaluation, and for why trade might affect high quality local firms 'unfairly'

    Improving the spatial resolution of a soft X-ray Charge Coupled Device used for Resonant Inelastic X-ray Scattering

    Get PDF
    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Advanced Resonant Scattering (ADRESS) beamline of the Swiss Light Source is a high-resolution X-ray spectrometer used as an end station for Resonant Inelastic X-ray Scattering from 400 eV to 1600 eV. Through the dispersion of photons across a CCD, the energy of scattered photons may be determined by their detected spatial position. The limiting factor of the energy resolution is currently the spatial resolution achieved with the CCD, reported at 24 μm FWHM. For this energy range the electron clouds are formed by interactions in the `field free' region of the back-illuminated CCD. These clouds diffuse in all directions whilst being attracted to the electrodes, leading to events that are made up of signals in multiple pixels. The spreading of the charge allows centroiding techniques to be used to improve the CCD spatial resolution and therefore improve the energy resolution of SAXES. The PolLux microscopy beamline at the SLS produces an X-ray beam with a diameter of 20 nm. The images produced from scanning the narrow beam across CCD pixels (13.5 x 13.5 μm2 ) can aid in the production of event recognition algorithms, allowing the matching of event profiles to photon interactions in a specific region of a pixel. Through the use of this information software analysis can be refined with the aim of improving the energy resolution

    Electron-multiplying CCDs for future soft X-ray spectrometers

    Get PDF
    CCDs have been used in several high resolution soft X-ray spectrometers for both space and terrestrial applications such as the Reflection Grating Spectrometer on XMM-Newton and the Super Advanced X-ray Emission Spectrometer at the Paul Scherrer Institut in Switzerland. However, with their ability to use multiplication gain to amplify signal and suppress readout noise, EM-CCDs are being considered instead of CCDs for future soft X-ray spectrometers. When detecting low energy X-rays, EM-CCDs are able to increase the Signal-to-Noise ratio of the device, making the X-rays much easier to detect. If the signal is also significantly split between neighbouring pixels, the increase in the size of the signal will make complete charge collection and techniques such as centroiding easier to accomplish. However, multiplication gain from an EM-CCD does cause a degradation of the energy resolution of the device and there are questions about how the high field region in an EM-CCD will behave over time in high radiation environments. This paper analyses the possible advantages and disadvantages of using EM-CCDs for high resolution soft X-ray spectroscopy and suggests in which situations using them would not only be possible, but also beneficial to the instrument

    Beneficial health effects of cumin (Cuminum cyminum) seeds upon incorporation as a potential feed additive in livestock and poultry: A mini-review

    Get PDF
    Cumin (Cuminum cyminum Linn) is an annual plant of the family Umbelliferae, with its use dating back to ancient times when it was cultivated for its medicinal and culinary potential. Cumin seeds could contain a wide variety of phytochemicals, including alkaloids, coumarins, anthraquinones, flavonoids, glycosides, proteins, resins, saponins, tannins, and steroids. In particular, linoleic acid, one of the unsaturated fatty acids found in abundance in cumin oleoresin, is credited with promoting good health. Many of cumin's purported biological actions in livestock and poultry have been attributed to flavonoids such as apigenin, luteolin, and glycosides. Cumin has several healthful qualities, such as antibacterial, insecticidal, anti-inflammatory, analgesic, antioxidant, anticancer, anti-diabetic, anti-platelet aggregation, hypotensive, bronchodilatory, immunological, anti-amyloidogenic, and anti-osteoporotic properties. Cumin supplementation may improve milk production and reproductive function in dairy cows by altering the feeding pattern of bacteria in the rumen, encouraging the growth of beneficial microbes, or stimulating the secretion of certain digestive enzymes. Because of the low price of cumin seed, it could be concluded that its inclusion in the diet might be beneficial to the commercial poultry industry and reduce the overall cost of egg and meat production. In recent years a rise in cumin's popularity has been seen as a result of the herbal movement spearheaded by naturopaths, yoga gurus, advocates of alternative medicine, and manufacturers of feed additives. Animal nutritionists are exploring the use of cumin for its potential to boost growth, improve nutrient usage efficiency, and reduce greenhouse gas emissions. This mini-review discusses how cumin could be used as a feed ingredient to boost productivity and ensure healthy animal reproduction

    Assessment of Genotypic Differences in Sorghum Root Characteristics

    Get PDF
    Representative data on genotypic differences in sorghum root characteristics are examined for prospective use in applied breeding programmes. Significant genotype differences in root characteristics observed are: root-length density at lower depths when the crop 15 grown on stored. soil moisture. root-shoot ratios early establishment of nodal Roots In seedlings, and microbial associations of roots. Four-fold genotypic differences root-shoot ratio were found at the seedling stage, but high ontogenic shifts negated these differences at later stages. Hence . sorghum breeding for efficient root systems should be confined to well- defined target environments with specific objectives

    Developing the active trap model for CCD charge transfer optimisation in large-scale space missions

    Get PDF
    Charge coupled devices (CCDs) have been the detector of choice for large-scale space mission for many years. Although dominant in this field, the charge transfer performance of the technology degrades over time due to the harsh space-radiation environment. Charge transfer performance can be optimized however, but it is often time consuming and expensive due to the many operating modes of the CCDs. A new technique is presented and developed here, which uses new measurements of the trap landscape present in a CCD, to predict changes in charge transfer inefficiency as a function of different variables. By using this technique, it is possible to focus experimental lab testing on key device parameters, potentially saving many months of laboratory effort. Due to the generality of the method, it can be used to optimize the charge transfer performance of any CCD, and as such has many uses across a wide range of fields. Future CCDs variants that will be used in potential space missions (EMCCD and p-channel CCDs) can use this technique to feedback key device performance to the wider mission consortium before devices are available for experimental testing

    Identification of moaA3 gene in patient isolates of Mycobacterium tuberculosis in Kerala, which is absent in M. tuberculosis H37Rv and H37Ra

    Get PDF
    BACKGROUND: Tuberculosis is endemic to developing countries like India. Though the whole genome sequences of the type strain M. tuberculosis H37Rv and the clinical strain M. tuberculosis CDC1551 are available, the clinical isolates from India have not been studied extensively at the genome level. This study was carried out in order to have a better understanding of isolates from Kerala, a state in southern India. RESULTS: A PCR based strategy was followed making use of the deletion region primers to understand the genome level differences between the type strain H37Rv and the clinical isolates of M. tuberculosis from Kerala. PCR analysis of patient isolates using RD1 region primers revealed the amplification of a 386 bp region, in addition to the expected 652 bp amplicon. Southern hybridization of genomic DNA with the 386 bp amplicon confirmed the presence of this new region in a majority of the patient isolates from Kerala. Sequence comparison of this amplicon showed close homology with the moaA3 gene of M. bovis. In M. bovis this gene is present in the RvD5 region, an IS6110 mediated deletion that is absent in M. tuberculosis H37Rv. CONCLUSION: This study demonstrates the presence of moaA3 gene, that is absent in M. tuberculosis H37Rv and H37Ra, in a large number of local isolates. Whether the moaA3 gene provides any specific advantage to the field isolates of the pathogen is unclear. Field strains from Kerala have fewer IS6110 sequences and therefore are likely to have fewer IS6110 dependent rearrangements. But as deletions and insertions account for much of the genomic diversity of M. tuberculosis, the mechanisms of formation of sequence polymorphisms in the local isolates should be further examined. These results suggest that studies should focus on strains from endemic areas to understand the complexities of this pathogen

    Reconstituted TAD-size chromatin fibers feature heterogeneous nucleosome clusters

    Get PDF
    Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter '601' arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and '601' DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers' global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.Biological and Soft Matter Physic
    • …
    corecore