742 research outputs found

    Equation of state for the MCFL phase and its implications for compact star models

    Full text link
    Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent bag constant to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs. bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.Comment: 11 pp. 11 figure

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    Tautomeric mutation: A quantum spin modelling

    Full text link
    A quantum spin model representing tautomeric mutation is proposed for any DNA molecule. Based on this model, the quantum mechanical calculations for mutational rate and complementarity restoring repair rate in the replication processes are carried out. A possible application to a real biological system is discussed.Comment: 7 pages (no figures

    Shear-free radiating collapse and conformal flatness

    Full text link
    Here we study some general properties of spherical shear-free collapse. Its general solution when imposing conformal flatness is reobtained [1,2] and matched to the outgoing Vaidya spacetime. We propose a simple model satisfying these conditions and study its physical consequences. Special attention deserve, the role played by relaxational processes and the conspicuous link betweeen dissipation and density inhomogeneity.Comment: 13 pages Latex. Some misprints in eqs.(17), (30) and (35) have been correcte

    Managing Dynamic User Communities in a Grid of Autonomous Resources

    Get PDF
    One of the fundamental concepts in Grid computing is the creation of Virtual Organizations (VO's): a set of resource consumers and providers that join forces to solve a common problem. Typical examples of Virtual Organizations include collaborations formed around the Large Hadron Collider (LHC) experiments. To date, Grid computing has been applied on a relatively small scale, linking dozens of users to a dozen resources, and management of these VO's was a largely manual operation. With the advance of large collaboration, linking more than 10000 users with a 1000 sites in 150 counties, a comprehensive, automated management system is required. It should be simple enough not to deter users, while at the same time ensuring local site autonomy. The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG projects[1, 2], is a secured system for managing authorization for users and resources in virtual organizations. It extends the existing Grid Security Infrastructure[3] architecture with embedded VO affiliation assertions that can be independently verified by all VO members and resource providers. Within the EU DataGrid project, Grid services for job submission, file- and database access are being equipped with fine- grained authorization systems that take VO membership into account. These also give resource owners the ability to ensure site security and enforce local access policies. This paper will describe the EU DataGrid security architecture, the VO membership service and the local site enforcement mechanisms Local Centre Authorization Service (LCAS), Local Credential Mapping Service(LCMAPS) and the Java Trust and Authorization Manager.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 5 eps figures. PSN TUBT00

    The Einstein static universe with torsion and the sign problem of the cosmological constant

    Full text link
    In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalising the Einstein Cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new equation, new reference [5], completed reference [13], two references adde

    Mission to planet Earth : the first two billion years

    Get PDF
    Solar radiation and geological processes over the first few million years of Earth’s history, followed soon thereafter by the origin of life, steered our planet towards an evolutionary trajectory of long-lived habitability that ultimately enabled the emergence of complex life. We review the most important conditions and feedbacks over the first 2 billion years of this trajectory, which perhaps represent the best analogue for other habitable worlds in the galaxy. Crucial aspects included: (1) the redox state and volatile content of Earth’s building blocks, which determined the longevity of the magma ocean and its ability to degas H2O and other greenhouse gases, in particular CO2, allowing the condensation of a water ocean; (2) the chemical properties of the resulting degassed mantle, including oxygen fugacity, which would have not only affected its physical properties and thus its ability to recycle volatiles and nutrients via plate tectonics, but also contributed to the timescale of atmospheric oxygenation; (3) the emergence of life, in particular the origin of autotrophy, biological N2 fixation, and oxygenic photosynthesis, which accelerated sluggish abiotic processes of transferring some volatiles back into the lithosphere; (4) strong stellar UV radiation on the early Earth, which may have eroded significant amounts of atmospheric volatiles, depending on atmospheric CO2/N2 ratios and thus impacted the redox state of the mantle as well as the timing of life’s origin; and (5) evidence of strong photochemical effects on Earth’s sulfur cycle, preserved in the form of mass-independent sulfur isotope fractionation, and potentially linked to fractionation in organic carbon isotopes. The early Earth presents itself as an exoplanet analogue that can be explored through the existing rock record, allowing us to identify atmospheric signatures diagnostic of biological metabolisms that may be detectable on other inhabited planets with next-generation telescopes. We conclude that investigating the development of habitable conditions on terrestrial planets, an inherently complex problem, requires multi-disciplinary collaboration and creative solutions.Publisher PDFPeer reviewe

    Supertube domain-walls and elimination of closed time-like curves in string theory

    Full text link
    We show that some novel physics of supertubes removes closed time-like curves from many supersymmetric spaces which naively suffer from this problem. The main claim is that supertubes naturally form domain-walls, so while analytical continuation of the metric would lead to closed time-like curves, across the domain-wall the metric is non-differentiable, and the closed time-like curves are eliminated. In the examples we study the metric inside the domain-wall is always of the G\"odel type, while outside the shell it looks like a localized rotating object, often a rotating black hole. Thus this mechanism prevents the appearance of closed time-like curves behind the horizons of certain rotating black holes.Comment: 22 pages, JHEP3 class. V2: Some corrections and clariffications, references added. V3: more corrections to formulas, results unchanged. V4: minor typos, as published in PR

    Holographic Protection of Chronology in Universes of the Godel Type

    Get PDF
    We analyze the structure of supersymmetric Godel-like cosmological solutions of string theory. Just as the original four-dimensional Godel universe, these solutions represent rotating, topologically trivial cosmologies with a homogeneous metric and closed timelike curves. First we focus on "phenomenological" aspects of holography, and identify the preferred holographic screens associated with inertial comoving observers in Godel universes. We find that holography can serve as a chronology protection agency: The closed timelike curves are either hidden behind the holographic screen, or broken by it into causal pieces. In fact, holography in Godel universes has many features in common with de Sitter space, suggesting that Godel universes could represent a supersymmetric laboratory for addressing the conceptual puzzles of de Sitter holography. Then we initiate the investigation of "microscopic" aspects of holography of Godel universes in string theory. We show that Godel universes are T-dual to pp-waves, and use this fact to generate new Godel-like solutions of string and M-theory by T-dualizing known supersymmetric pp-wave solutions.Comment: 35 pages, 5 figures. v2: typos corrected, references adde
    corecore