852 research outputs found
Equation of state for the MCFL phase and its implications for compact star models
Using the solutions of the gap equations of the magnetic-color-flavor-locked
(MCFL) phase of paired quark matter in a magnetic field, and taking into
consideration the separation between the longitudinal and transverse pressures
due to the field-induced breaking of the spatial rotational symmetry, the
equation of state (EoS) of the MCFL phase is self-consistently determined. This
result is then used to investigate the possibility of absolute stability, which
turns out to require a field-dependent bag constant to hold. That is, only if
the bag constant varies with the magnetic field, there exists a window in the
magnetic field vs. bag constant plane for absolute stability of strange matter.
Implications for stellar models of magnetized (self-bound) strange stars and
hybrid (MCFL core) stars are calculated and discussed.Comment: 11 pp. 11 figure
Modeling cancer metabolism on a genome scale
Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field
Immuno-virological and toxicity outcomes of HIV-infected patients after 48 months of ART in Phnom Penh, Cambodia
Mexico AIDS Conference 200
Recurrent temporal bone tenosynovial giant cell tumor with chondroid metaplasia: the use of imaging to assess recurrence
Tenosynovial giant cell tumor (TGCT) is a benign proliferative lesion of unclear etiology. It is predominantly monoarticular and involves the synovium of the joint, tendon sheath, and bursa. TGCT of the temporomandibular joint (TMJ) is rare and aggressive resulting in destruction of surrounding structures. The diagnosis may be suggested by imaging, mainly by the MR features and PET/CT, and confirmed by histopathology. We describe the case of a 50-year-old man who presented with right-sided hearing loss, tinnitus and TMJ pain. Pathology revealed tenosynovial giant cell tumor with chondroid metaplasia. Six years later he developed a recurrence, which was documented to our knowledge for the first time with CT, MR and FDG PET/CT imaging
Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory
We present experiments on the luminescence of excitons confined in a
potential trap at milli-Kelvin bath temperatures under cw-excitation. They
reveal several distinct features like a kink in the dependence of the total
integrated luminescence intensity on excitation laser power and a bimodal
distribution of the spatially resolved luminescence. Furthermore, we discuss
the present state of the theoretical description of Bose-Einstein condensation
of excitons with respect to signatures of a condensate in the luminescence. The
comparison of the experimental data with theoretical results with respect to
the spatially resolved as well as the integrated luminescence intensity shows
the necessity of taking into account a Bose-Einstein condensed excitonic phase
in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure
Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry
We consider a triality between the Zermelo navigation problem, the geodesic
flow on a Finslerian geometry of Randers type, and spacetimes in one dimension
higher admitting a timelike conformal Killing vector field. From the latter
viewpoint, the data of the Zermelo problem are encoded in a (conformally)
Painleve-Gullstrand form of the spacetime metric, whereas the data of the
Randers problem are encoded in a stationary generalisation of the usual optical
metric. We discuss how the spacetime viewpoint gives a simple and physical
perspective on various issues, including how Finsler geometries with constant
flag curvature always map to conformally flat spacetimes and that the Finsler
condition maps to either a causality condition or it breaks down at an
ergo-surface in the spacetime picture. The gauge equivalence in this network of
relations is considered as well as the connection to analogue models and the
viewpoint of magnetic flows. We provide a variety of examples.Comment: 37 pages, 6 figure
Managing Dynamic User Communities in a Grid of Autonomous Resources
One of the fundamental concepts in Grid computing is the creation of Virtual
Organizations (VO's): a set of resource consumers and providers that join
forces to solve a common problem. Typical examples of Virtual Organizations
include collaborations formed around the Large Hadron Collider (LHC)
experiments. To date, Grid computing has been applied on a relatively small
scale, linking dozens of users to a dozen resources, and management of these
VO's was a largely manual operation. With the advance of large collaboration,
linking more than 10000 users with a 1000 sites in 150 counties, a
comprehensive, automated management system is required. It should be simple
enough not to deter users, while at the same time ensuring local site autonomy.
The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG
projects[1, 2], is a secured system for managing authorization for users and
resources in virtual organizations. It extends the existing Grid Security
Infrastructure[3] architecture with embedded VO affiliation assertions that can
be independently verified by all VO members and resource providers. Within the
EU DataGrid project, Grid services for job submission, file- and database
access are being equipped with fine- grained authorization systems that take VO
membership into account. These also give resource owners the ability to ensure
site security and enforce local access policies. This paper will describe the
EU DataGrid security architecture, the VO membership service and the local site
enforcement mechanisms Local Centre Authorization Service (LCAS), Local
Credential Mapping Service(LCMAPS) and the Java Trust and Authorization
Manager.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 5 eps figures. PSN
TUBT00
- …