133 research outputs found

    Hypothalamic excitatory amino acid receptors mediate stress-induced tachycardia in rats

    Get PDF
    The role of hypothalamic excitatory amino acid (EAA) receptors in mediating the cardiovascular response to stress was examined using conscious chronically instrumented rats. Microinjection of the EAA agonists N-methyl-D-aspartic acid (NMDA; 1-10 pmol), alpha-amino-3-hydroxy-5-methyl-4-isooxazolepropionic acid (AMPA; 0.3-3.0 pmol), or kainic acid (0.1-1.0 pmol) into the dorsomedial hypothalamus (DMH) elicited dose-related increases in heart rate and modest elevations in arterial pressure. Local microinjection of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP5; 100 pmol) selectively blocked NMDA-induced cardiovascular changes, whereas the non-NMDA EAA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 pmol) selectively blocked the responses to AMPA and kainic acid. In the stress trials, microinjection of the nonselective EAA antagonist kynurenic acid (1-10 nmol) into the DMH blocked air stress-induced tachycardia in a dose-related manner. Similar injection of kynurenic acid at sites lateral or posterior to the DMH or injection of xanthurenic acid (a structural analogue of kynurenic acid with no antagonistic properties at EAA receptors) into the DMH failed to influence air stress-induced cardiovascular changes. Injection of either AP5 or CNQX into the DMH at doses shown to be selective for their respective EAA receptor subtypes also attenuated air stress-induced tachycardia. Thus activity at EAA receptors in the DMH appears to be necessary for the generation of stress-induced changes in heart rate

    GABA\u3csub\u3eA\u3c/sub\u3e and excitatory amino acid receptors in dorsomedial hypothalamus and heart rate in rats

    Get PDF
    We have previously shown that microinjection of drugs that interfere with the function of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) into the hypothalamus produces cardiorespiratory and behavioral changes resembling those seen in emotional stress. The purpose of this study was to determine whether excitatory amino acids (EAAs) can produce a cardiovascular response similar to that caused by the GABAA receptor antagonist bicuculline methiodide (BMI) when microinjected at the same hypothalamic site in urethan-anesthetized rats and to clarify the precise locus of action of these agents. N-methyl-D-aspartic acid (NMDA, 0.68-6.8 pmol/50 nl) and kainic acid (KA, 0.47-4.7 pmol/50 nl) produced dose-related increases in heart rate and blood pressure when injected at sites in the dorsomedial hypothalamus reactive to BMI (20 pmol/50 nl). Higher doses of NMDA (68 pmol), however, failed to elicit consistent increases in heart rate and blood pressure when injected at these same sites. The effects of NMDA were selectively blocked by the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid, whereas the effects of KA were selectively blocked by the non-NMDA EAA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. These results demonstrate that 1) blockade of inhibitory amino acid receptors or stimulation of EAA receptors in the dorsomedial nucleus of the hypothalamus produces tachycardic and pressor responses in urethan-anesthetized rats and 2) use of high doses of EAAs may be an unreliable method of evoking local neuronal excitation in certain regions of the central nervous system

    Interaction of hypothalamic GABA\u3csub\u3eA\u3c/sub\u3e and excitatory amino acid receptors controlling heart rate in rats

    Get PDF
    We have previously shown that microinjection of drugs that impair gamma-aminobutyric acid (GABA)-mediated synaptic inhibition into the dorsomedial hypothalamus (DMH) of rats generates cardiovascular and behavioral changes that mimic the response to stress. The purpose of this study was to examine the role of excitatory amino acid (EAA) receptors in the DMH in generating the cardiovascular changes caused by withdrawal of local GABAergic inhibition in urethan-anesthetized rats. Local treatment of the DMH with the nonselective EAA antagonist kynurenic acid blocked or reversed the increases in heart rate and blood pressure caused by microinjection of the GABAA antagonists bicuculline methiodide (BMI) or picrotoxin into the same region. Conversely, similar injection of xanthurenic acid, a structural analogue of kynurenic acid without significant effects on EAA receptors, did not significantly alter the cardiovascular changes produced by either GABAA antagonist. The tachycardic effects of BMI were also attenuated by injection of either the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid or the non-NMDA EAA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When the two EAA receptor antagonists were combined, their effects to suppress the BMI-induced tachycardia were additive. These findings suggest that the cardiovascular effects caused by blockade of GABAergic inhibition in the DMH of the rat are dependent on activation of local NMDA and non-NMDA EAA receptors

    Stress and Emotion Classification Using Jitter and Shimmer Features

    Get PDF
    In this paper, we evaluate the use of appended jitter and shimmer speech features for the classification of human speaking styles and of animal vocalization arousal levels. Jitter and shimmer features are extracted from the fundamental frequency contour and added to baseline spectral features, specifically Mel-frequency cepstral coefficients (MFCCs) for human speech and Greenwood function cepstral coefficients (GFCCs) for animal vocalizations. Hidden Markov models (HMMs) with Gaussian mixture models (GMMs) state distributions are used for classification. The appended jitter and shimmer features result in an increase in classification accuracy for several illustrative datasets, including the SUSAS dataset for human speaking styles as well as vocalizations labeled by arousal level for African elephant and Rhesus monkey species

    Bee Threat Elicits Alarm Call in African Elephants

    Get PDF
    Unlike the smaller and more vulnerable mammals, African elephants have relatively few predators that threaten their survival. The sound of disturbed African honeybees Apis meliffera scutellata causes African elephants Loxodonta africana to retreat and produce warning vocalizations that lead other elephants to join the flight. In our first experiment, audio playbacks of bee sounds induced elephants to retreat and elicited more head-shaking and dusting, reactive behaviors that may prevent bee stings, compared to white noise control playbacks. Most importantly, elephants produced distinctive “rumble” vocalizations in response to bee sounds. These rumbles exhibited an upward shift in the second formant location, which implies active vocal tract modulation, compared to rumbles made in response to white noise playbacks. In a second experiment, audio playbacks of these rumbles produced in response to bees elicited increased headshaking, and further and faster retreat behavior in other elephants, compared to control rumble playbacks with lower second formant frequencies. These responses to the bee rumble stimuli occurred in the absence of any bees or bee sounds. This suggests that these elephant rumbles may function as referential signals, in which a formant frequency shift alerts nearby elephants about an external threat, in this case, the threat of bees

    Clinical Decision-Making Following Disasters: Efficient Identification of PTSD Risk in Adolescents

    Get PDF
    The present study aimed to utilize a Receiver Operating Characteristic (ROC) approach in order to improve clinical decision-making for adolescents at risk for the development of psychopathology in the aftermath of a natural disaster. Specifically we assessed theoretically-driven individual, interpersonal, and event-related vulnerability factors to determine which indices were most accurate in forecasting PTSD. Furthermore, we aimed to translate these etiological findings by identifying clinical cut-off recommendations for relevant vulnerability factors. Our study consisted of structured phone-based clinical interviews with 2,000 adolescent-parent dyads living within a 5-mile radius of tornados that devastated Joplin, MO, and northern Alabama in Spring 2011. Demographics, tornado incident characteristics, prior trauma, mental health, and family support and conflict were assessed. A subset of youth completed two behavioral assessment tasks online to assess distress tolerance and risk taking behavior. ROC analyses indicated four variables that significantly improved PTSD diagnostic efficiency: Lifetime depression (AUC=.90), trauma history (AUC=.76), social support (AUC=.70), and family conflict (AUC=.72). Youth were 2–3 times more likely to have PTSD if they had elevated scores on any of these variables. Of note, event-related characteristics (e.g., property damage) were not related to PTSD diagnostic status. The present study adds to the literature by making specific recommendations for empirically-based, efficient disaster-related PTSD assessment for adolescents following a natural disaster. Implications for practice and future trauma-related developmental psychopathology research are discussed

    Wild state secrets: ultra-sensitive measurement of micro-movement can reveal internal processes in animals

    Get PDF
    Assessment of animal internal "state" - which includes hormonal, disease, nutritional, and emotional states - is normally considered the province of laboratory work, since its determination in animals in the wild is considered more difficult. However, we show that accelerometers attached externally to animals as diverse as elephants, cockroaches, and humans display consistent signal differences in micro-movement that are indicative of internal state. Originally used to elucidate the behavior of wild animals, accelerometers also have great potential for highlighting animal actions, which are considered as responses stemming from the interplay between internal state and external environment. Advances in accelerometry may help wildlife managers understand how internal state is linked to behavior and movement, and thus clarify issues ranging from how animals cope with the presence of newly constructed roads to how diseased animals might change movement patterns and therefore modulate disease spread

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Rapid cultural adaptation can facilitate the evolution of large-scale cooperation

    Get PDF
    Over the past several decades, we have argued that cultural evolution can facilitate the evolution of large-scale cooperation because it often leads to more rapid adaptation than genetic evolution, and, when multiple stable equilibria exist, rapid adaptation leads to variation among groups. Recently, Lehmann, Feldman, and colleagues have published several papers questioning this argument. They analyze models showing that cultural evolution can actually reduce the range of conditions under which cooperation can evolve and interpret these models as indicating that we were wrong to conclude that culture facilitated the evolution of human cooperation. In the main, their models assume that rates of cultural adaption are not strong enough compared to migration to maintain persistent variation among groups when payoffs create multiple stable equilibria. We show that Lehmann et al. reach different conclusions because they have made different assumptions. We argue that the assumptions that underlie our models are more consistent with the empirical data on large-scale cultural variation in humans than those of Lehmann et al., and thus, our models provide a more plausible account of the cultural evolution of human cooperation in large groups
    corecore