114 research outputs found

    Regional vulnerability of the hippocampus to repeated motor activity deprivation

    Get PDF
    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3 h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress. © 2015 Elsevier B.V

    Rational design of hypoallergenic vaccines: Blocking ige-binding to polcalcin using allergen-specific igg antibodies

    Get PDF
    Chenopodium album polcalcin (Che a 3) is characterized as a major cause of cross-reactivity inallergic patients to the Chenopodiaceae family. Therefore, the present study was conducted to develop a hypoallergenic Che a 3 derivatives as the candidate vaccine for type 1 allergy. Four derivatives were generated from Che a 3. The first was a mosaic peptide derivative computationally identified in Che a 3 which was coupled to keyhole limpet hemocyanin (KLH). The second one was a mutant Che a 3, and the other two derivatives included N-and C-Terminal halves of Che a 3 that both coupled to KLH. The IgE-binding capacity of Che a 3 and its derivatives and also their ability to induce there combinant Che a 3 (rChe a 3)-specific IgG antibody, were determined using the enzyme-linked immune sorbent assay (ELISA). Moreover, the lymphopro liferative capacity of rChe a 3 or its derivatives and their pro-inflammatory cytokine response interleukin (IL)-5 and IL-13 were measured in the human peripheral blood mononuclear cells (PBMCs). Among all derivatives, the N-Terminal half peptide and mosaic peptide exhibited the lowest IgEbinding capacity. In addition, in comparison to other antigens, KLH-coupled mosaic peptide induced the highest level of the recombinant Che a 3 (rChe a 3)-specific IgG antibody and ther Che a 3 specific-blocking IgG antibody in mice. Moreover, the mosaic peptide lacked lymphopro liferative capacity and down-regulated expression of pro-Allergic IL-5 and IL-13 cytokines. Therefore, a peptide-carrier fusion vaccine, composed of the B-cell epitope coupled to the carrier, could be considered as one of the promising hypoallergenic vaccines to treat patients with allergy to low molecular weight allergens such as Che

    Stress enhances return-based behaviors in Wistar rats during spatial navigation without altering spatial performance: Improvement or deficit?

    No full text
    Stress is frequently reported to be deleterious to spatial learning and memory. However, there are many instances in which spatial performance is not affected by stress. This discrepancy observed across different studies, in addition to the animals' strain and gender, may be caused by the type of the task employed to assess stress-related behavioral changes. The present experiments set out to investigate the effects of repeated restraint stress (3. h/21. days) on spatial performance within the two wet-land (Morris water task; MWT) and dry-land (the ziggurat task; ZT) tasks for spatial learning and memory in adult male Wistar rats. All rats were tested before and after stress treatment. Stressed rats gained less weight than controls. Stress also enhanced circulating corticosterone (CORT). We did not observe a deleterious effect of stress on spatial learning and memory in either of the tasks: both groups successfully performed the wet- and dry-land tasks across all spatial testing days, indicating intact spatial cognition in control and stress rats. However, daily restraint stress for 21. days significantly caused enhancement in rats' memory-dependent returns during the goal-directed investigation in the ZT. The number of returns on learning days was not affected by repeated restraint stress. Return-based spatial investigation induced by stress only on memory days in the dry-land task, not only emphasize on the task-dependent nature of stress-related alterations, it may reveal one of the silent, but arguably deleterious effects of stress on spatial memory in Wistar rats. © 2013 Elsevier Inc

    Factors Associated with Zn Chlorosis in Dryland Beans 1

    No full text

    Intergenerational sex-specific transmission of maternal social experience

    No full text
    The social environment is a major determinant of individual stress response and lifetime health. The present study shows that (1) social enrichment has a significant impact on neuroplasticity and behaviour particularly in females; and (2) social enrichment in females can be transmitted to their unexposed female descendants. Two generations (F0 and F1) of male and female rats raised in standard and social housing conditions were examined for neurohormonal and molecular alterations along with changes in four behavioural modalities. In addition to higher cortical neuronal density and cortical thickness, social experience in mothers reduced hypothalamic-pituitary-adrenal (HPA) axis activity in F0 rats and their F1 non-social housing offspring. Only F0 social mothers and their F1 non-social daughters displayed improved novelty-seeking exploratory behaviour and reduced anxiety-related behaviour whereas their motor and cognitive performance remained unchanged. Also, cortical and mRNA measurements in the F1 generation were affected by social experience intergenerationally via the female lineage (mother-to-daughter). These findings indicate that social experience promotes cortical neuroplasticity, neurohormonal and behavioural outcomes, and these changes can be transmitted to the F1 non-social offspring in a sexually dimorphic manner. Thus, a socially stimulating environment may form new biobehavioural phenotypes not only in exposed individuals, but also in their intergenerationally programmed descendants. © 2018 The Author(s)
    corecore