76 research outputs found

    Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS

    Get PDF
    Background and Objective: Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration characterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do. Methods: The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained. Results: The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of the results obtained increased, especially when classifying bulbar and no-bulbar patients obtaining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date. Conclusions: The results obtained demonstrate the efficiency and applicability of the methodology presented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress.This work was approved by the Research Ethics Committee for Biomedical Research Projects (CEIm) at the Bellvitge University Hospital in Barcelona and was supported by the Ministerio de Economía y Competitividad (TIN2017-84553-C2-2-R) and the Ministerio de Ciencia e Innovacion (PID2020-113614RBC22). AT is a member of CIMNE, a Severo Ochoa Centre of Excellence (2019-2023) under grant CEX2018-000797-S, funded by MCIN/AEI/10.13039/501100011033. The Neurology Department of the Bellvitge University Hospital in Barcelona permitted the recording of the voices of the participants in its facilities. The clinical records were provided by Carlos Augusto Salazar Talavera. Dr. Marta Fulla and Maria Carmen Majos Bellmunt contributed advice about the process of eliciting the sounds

    Biblio-MetReS for user-friendly mining of genes and biological processes in scientific documents

    Get PDF
    One way to initiate the reconstruction of molecular circuits is by using automated text-mining techniques. Developing more efficient methods for such reconstruction is a topic of active research, and those methods are typically included by bioinfor- maticians in pipelines used to mine and curate large literature datasets. Nevertheless, experimental biologists have a limited number of available user-friendly tools that use text-mining for network reconstruction and require no programming skills to use. One of these tools is Biblio-MetReS. Originally, this tool permitted an on-the-fly analysis of documents contained in a number of web-based literature databases to identify co-occurrence of proteins/genes. This approach ensured results that were always up-to-date with the latest live version of the databases. However, this `up-to- dateness' came at the cost of large execution times. Here we report an evolution of the application Biblio-MetReS that permits constructing co-occurrence networks for genes, GO processes, Pathways, or any combination of the three types of entities and graphically represent those entities.We show that the performance of Biblio- MetReS in identifying gene co-occurrence is as least as good as that of other com- parable applications (STRING and iHOP). In addition, we also show that the iden- tification of GO processes is on par to that reported in the latest BioCreAtIvE chal- lenge. Finally, we also report the implementation of a new strategy that combines on-the-fly analysis of new documents with preprocessed information from docu- ments that were encountered in previous analyses. This combination simultaneously decreases program run time and maintains `up-to-dateness' of the results.RA was partially supported by the Ministerio de Ciencia e Innovación (MICINN, Spain through grant BFU2010-17704). FS was partially funded by the MICINN, with grants TIN2011-28689-C02-02. The authors are members of the research groups 2009SGR809 and 2009SGR145, funded by the “Generalitat de Catalunya”. AU is funded by a Generalitat de Catalunya (AGAUR) PhD fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A production planning model considering uncertain demand using two-stage stochastic programming in a fresh vegetable supply chain context

    Get PDF
    Production planning models are achieving more interest for being used in the primary sector of the economy. The proposed model relies on the formulation of a location model representing a set of farms susceptible of being selected by a grocery shop brand to supply local fresh products under seasonal contracts. The main aim is to minimize overall procurement costs and meet future demand. This kind of problem is rather common in fresh vegetable supply chains where producers are located in proximity either to processing plants or retailers. The proposed two-stage stochastic model determines which suppliers should be selected for production contracts to ensure high quality products and minimal time from farm-to-table. Moreover, Lagrangian relaxation and parallel computing algorithms are proposed to solve these instances efficiently in a reasonable computational time. The results obtained show computational gains from our algorithmic proposals in front of the usage of plain CPLEX solver. Furthermore, the results ensure the competitive advantages of using the proposed model by purchase managers in the fresh vegetables industry.This work was supported by the MEyC under contracts TIN2011-28689-C02-02, TRA2013-48180-C3-P and TIN2014- 53234-C2-2-R. The authors are members of the research group 2014-SGR163 and 2014-SGR151, funded by the Generali- tat de Catalunya
    corecore