692 research outputs found

    Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system

    Get PDF
    It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption

    An empirically-derived control structure for the process of program understanding

    Get PDF
    Résumé disponible dans les fichiers attaché

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment

    Up and down the number line: modelling collaboration in contrasting school and home environments

    Get PDF
    This paper is concerned with user modelling issues such as adaptive educational environments, adaptive information retrieval, and support for collaboration. The HomeWork project is examining the use of learner modelling strategies within both school and home environments for young children aged 5 – 7 years. The learning experience within the home context can vary considerably from school especially for very young learners, and this project focuses on the use of modelling which can take into account the informality and potentially contrasting learning styles experienced within the home and school

    Problem-based learning supported by semantic techniques

    Get PDF
    Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models

    Using Simulations as a Starting Point for Constructing Meaningful Learning Games

    Get PDF
    For many school administrators and decision makers, the term “video games” holds numerous cultural associations which make their adoption in the education space challenging. Additionally, the term is so broad that it can sometimes be difficult to communicate explicitly a desire to build learning experiences that go beyond the Drill and Kill edutainment titles that currently dominate most people’s perceptions of educational games. By contrast, the term “simulations” is often well respected among educators, particularly in the natural sciences. With “simulation” already being a full genre of video games, it would seem natural that researchers are beginning to explore the overlaps between simulation games and pedagogical goals that go beyond those found in Drill and Kill games. In this chapter, we survey some of the relevant research concerning both simulations and video games and outline practical pathways through which we can leverage the interest and frameworks designed for simulation construction to facilitate the introduction of video game concepts and experiences into the classroom environment. In particular, we report on the use of Starlogo TNG, a graphical programming environment in which kids themselves can create simulation-based video games, for deepening children’s understanding of scientific concepts

    In the eye of the beholder:promoting learner-centric design to develop mobile games for learning

    Get PDF
    Out of the project EMuRgency a game-based learning environment evolved, which trains school children in providing reanimation and cardiopulmonary resuscitation (CPR). The application gets players to act as if they were in a real case of emergency. This paper reports on a formal usability study conducted with two different groups of learners, regular learners and learners with special educational needs (SEN). With the study we compared the two groups of learners with regard to game usability and effectiveness of the intervention. Our intention was to better understand the different needs and requirements to learning materials that game designer need to take into consideration in order to make the learning experience successful for both groups. A total of 89 children played the game simulation. Results showed differences in perception and effectiveness of individual mechanisms for the two groups with regard to usability or switching between tasks and mobile device.This publication was partly financed by the European Regional Development Fund (ERDF), regions of the Euregio Meuse-Rhine and the participating institutions under the INTERREG IVa program (EMR.INT4-1.2.-2011-04/070, http://www.emurgency.eu)

    Evaluation of a web-based ECG-interpretation programme for undergraduate medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most clinicians and teachers agree that knowledge about ECG is of importance in the medical curriculum. Students at Karolinska Institutet have asked for more training in ECG-interpretation during their undergraduate studies. Clinical tutors, however, have difficulties in meeting these demands due to shortage of time. Thus, alternative ways to learn and practice ECG-interpretation are needed. Education offered via the Internet is readily available, geographically independent and flexible. Furthermore, the quality of education may increase and become more effective through a superior educational approach, improved visualization and interactivity.</p> <p>Methods</p> <p>A Web-based comprehensive ECG-interpretation programme has been evaluated. Medical students from the sixth semester were given an optional opportunity to access the programme from the start of their course. Usage logs and an initial evaluation survey were obtained from each student. A diagnostic test was performed in order to assess the effect on skills in ECG interpretation. Students from the corresponding course, at another teaching hospital and without access to the ECG-programme but with conventional teaching of ECG served as a control group.</p> <p>Results</p> <p>20 of the 32 students in the intervention group had tested the programme after 2 months. On a five-graded scale (1- bad to 5 – very good) they ranked the utility of a web-based programme for this purpose as 4.1 and the quality of the programme software as 3.9. At the diagnostic test (maximal points 16) by the end of the 5-month course at the 6th semester the mean result for the students in the intervention group was 9.7 compared with 8.1 for the control group (p = 0.03).</p> <p>Conclusion</p> <p>Students ranked the Web-based ECG-interpretation programme as a useful instrument to learn ECG. Furthermore, Internet-delivered education may be more effective than traditional teaching methods due to greater immediacy, improved visualisation and interactivity.</p
    • …
    corecore