1,841 research outputs found
Two classes of generalized functions used in nonlocal field theory
We elucidate the relation between the two ways of formulating causality in
nonlocal quantum field theory: using analytic test functions belonging to the
space (which is the Fourier transform of the Schwartz space )
and using test functions in the Gelfand-Shilov spaces . We prove
that every functional defined on has the same carrier cones as its
restrictions to the smaller spaces . As an application of this
result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular
generalized functions of tempered growth and obtain the corresponding extension
of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure
Masses and Internal Structure of Mesons in the String Quark Model
The relativistic quantum string quark model, proposed earlier, is applied to
all mesons, from pion to , lying on the leading Regge trajectories
(i.e., to the lowest radial excitations in terms of the potential quark
models). The model describes the meson mass spectrum, and comparison with
measured meson masses allows one to determine the parameters of the model:
current quark masses, universal string tension, and phenomenological constants
describing nonstring short-range interaction. The meson Regge trajectories are
in general nonlinear; practically linear are only trajectories for light-quark
mesons with non-zero lowest spins. The model predicts masses of many new
higher-spin mesons. A new meson is predicted with mass 1910 Mev. In
some cases the masses of new low-spin mesons are predicted by extrapolation of
the phenomenological short-range parameters in the quark masses. In this way
the model predicts the mass of to be MeV, and
the mass of to be MeV (the potential model predictions
are 100 Mev lower). The relativistic wave functions of the composite mesons
allow one to calculate the energy and spin structure of mesons. The average
quark-spin projections in polarized -meson are twice as small as the
nonrelativistic quark model predictions. The spin structure of reveals an
80% violation of the flavour SU(3). These results may be relevant to
understanding the ``spin crises'' for nucleons.Comment: 30 pages, REVTEX, 6 table
Twisted convolution and Moyal star product of generalized functions
We consider nuclear function spaces on which the Weyl-Heisenberg group acts
continuously and study the basic properties of the twisted convolution product
of the functions with the dual space elements. The final theorem characterizes
the corresponding algebra of convolution multipliers and shows that it contains
all sufficiently rapidly decreasing functionals in the dual space.
Consequently, we obtain a general description of the Moyal multiplier algebra
of the Fourier-transformed space. The results extend the Weyl symbol calculus
beyond the traditional framework of tempered distributions.Comment: LaTeX, 16 pages, no figure
Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei
Theoretical studies of low-lying dipole strength in even-even spherical
nuclei within the relativistic quasiparticle time blocking approximation
(RQTBA) are presented. The RQTBA developed recently as an extension of the
self-consistent relativistic quasiparticle random phase approximation (RQRPA)
enables one to investigate effects of coupling of two-quasiparticle excitations
to collective vibrations within a fully consistent calculation scheme based on
covariant energy density functional theory. Dipole spectra of even-even
Sn -- Sn and Ni -- Ni isotopes calculated within
both RQRPA and RQTBA show two well separated collective structures: the
higher-lying giant dipole resonance (GDR) and the lower-lying pygmy dipole
resonance (PDR) which can be identified by a different behavior of the
transition densities of states in these regions.Comment: 28 pages, 13 figure
Free Boundary Poisson Bracket Algebra in Ashtekar's Formalism
We consider the algebra of spatial diffeomorphisms and gauge transformations
in the canonical formalism of General Relativity in the Ashtekar and ADM
variables. Modifying the Poisson bracket by including surface terms in
accordance with our previous proposal allows us to consider all local
functionals as differentiable. We show that closure of the algebra under
consideration can be achieved by choosing surface terms in the expressions for
the generators prior to imposing any boundary conditions. An essential point is
that the Poisson structure in the Ashtekar formalism differs from the canonical
one by boundary terms.Comment: 19 pages, Latex, amsfonts.sty, amssymb.st
Recent progress in the study of fission barriers in covariant density functional theory
Recent progress in the study of fission barriers of actinides and superheavy
nuclei within covariant density functional theory is overviewed.Comment: 10 pages, 5 figures. In press in International Journal of Modern
Physics
Benchmarks for the Forward Observables at RHIC, the Tevatron-run II and the LHC
We present predictions on the total cross sections and on the ratio of the
real part to the imaginary part of the elastic amplitude (rho parameter) for
present and future pp and pbar p colliders, and on total cross sections for
gamma p -> hadrons at cosmic-ray energies and for gamma gamma-> hadrons up to
sqrt{s}=1 TeV. These predictions are based on an extensive study of possible
analytic parametrisations invoking the biggest hadronic dataset available at
t=0. The uncertainties on total cross sections, including the systematic errors
due to contradictory data points from FNAL, can reach 1.9% at RHIC, 3.1% at the
Tevatron, and 4.8% at the LHC, whereas those on the rho parameter are
respectively 5.4%, 5.2%, and 5.4%.Comment: 11 pages, 2 figures, 4 tables, RevTeX
Spectroscopy of the heaviest nuclei (theory)
Recent progress in the applications of covariant density functional theory
(CDFT) to the description of the spectroscopy of the heaviest nuclei is
reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A
~ 250 nuclei provides a measure of the accuracy of the description of
single-particle energies in CDFT and an additional constraint for the choice of
effective interactions for the description of superheavy nuclei. The response
of these nuclei to the rotation is rather well described by cranked
relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in
configuration assignment in odd-mass nuclei. A systematic analysis of the
fission barriers with allowance for triaxial deformation shows that covariant
density functional theory is able to describe fission barriers on a level of
accuracy comparable with the best phenomenological macroscopic+microscopic
approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the
International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July
4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS
Finite element modeling of eigenvibrations of a bar with an elastically attached load
© 2018 Author(s). The nonlinear second-order differential eigenvalue problem describing eigenvibrations of a bar with elastically attached load is investigated. The existence of an increasing sequence of positive simple eigenvalues with a limit point at infinity is established. To the sequence of eigenvalues, there corresponds a system of normalized eigenfunctions. The initial nonlinear differential eigenvalue problem is approximated by the finite element method on a uniform grid. The accuracy of approximate solutions is studied. The investigations in the present paper can be extended to the cases of more complicated and important problems on eigenvibrations of beams, plates, and shells with elastically attached loads
- …