18,130 research outputs found

    Monte Carlo Simulation of 2-D Quantum Gravity as Open Dynamically Triangulate Random Surfaces

    Full text link
    We describe a Monte Carlo procedure for the simulation of dynamically triangulate random surfaces with a boundary (topology of a disk). The algorithm keeps the total number of triangles fixed, while the length of the boundary is allowed to fluctuate. The algorithm works in the presence of matter fields. We here present results for the pure gravity case. The algorithm reproduces the theoretical expectations.Comment: LaTeX file, 16 pages, 7 LaTeX figures, preprints CERN-TH.7028/93, MS-TPI-93-0

    A new look at the problem of gauge invariance in quantum field theory

    Full text link
    Quantum field theory is assumed to be gauge invariant. However it is well known that when certain quantities are calculated using perturbation theory the results are not gauge invariant. The non-gauge invariant terms have to be removed in order to obtain a physically correct result. In this paper we will examine this problem and determine why a theory that is supposed to be gauge invariant produces non-gauge invariant results.Comment: Accepted by Physica Scripta. 27 page

    Functional maps representation on product manifolds

    Get PDF
    We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices

    CO excitation in four IR luminous galaxies

    Get PDF
    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds

    Electron impact promoted fragmentation of alkyl-N-(1-Phenylethyl)-carbamates of primary, secondary and tertiary alcohols

    Get PDF
    Mass spectra of alkyl carbamates derived from primary, secondary, and teriary alcohols by use of deuterium labeling and high resolution mass spectroscop

    Molecular hydrogen in the galaxy and galactic gamma rays

    Get PDF
    Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center

    A qualitative study of the development of a multidisciplinary case conference review methodology to reduce involved margins in pelvic exenteration surgery for recurrent rectal cancer

    Get PDF
    Aim Pelvic exenteration surgery remains the only curative option for recurrent rectal cancer. Microscopically involved surgical margins (R1) are associated with a higher risk of local recurrence and decreased survival. Our study aimed to develop a post hoc multidisciplinary case conference review and investigate its potential for identifying areas for improvement. Method Results Patients who underwent pelvic exenteration surgery for recurrent rectal cancer with R1 resections at a tertiary referral centre between April 2014 and January 2016 were retrospectively reviewed from a prospectively maintained database. Patients with non-rectal cancers or who underwent palliative surgery were excluded. Cases, imaging and histopathology were evaluated by a dedicated panel including colorectal surgeons, an abdominal radiologist and a gastrointestinal pathologist. R1 resections were reported in 32 of 110 pelvic exenterations. Patients with other tumours were excluded and one patient had a palliative resection. Nine male patients with 11 exenterations were included with a median age of 56 years. All patients had positive soft tissue margins, and one patient also had an involved bony margin. Failures were due to (interdisciplinary) communication problems, specific management of tumour biology (multifocality, spiculated tumours), which can lead to radiological undercalling, and inadequate surgical technical planning. In hindsight, surgery would have been withheld from one patient. Conclusion A retrospective multidisciplinary case evaluation of pelvic exenteration patients with involved surgical margins led to a list of recommendations which included the need to plan for wider surgical soft tissue resections and improvement in interdisciplinary communication. Lessons learned may increase clear margin rates in future resections

    Coherent pairing states for the Hubbard model

    Full text link
    We consider the Hubbard model and its extensions on bipartite lattices. We define a dynamical group based on the η\eta-pairing operators introduced by C.N.Yang, and define coherent pairing states, which are combinations of eigenfunctions of η\eta-operators. These states permit exact calculations of numerous physical properties of the system, including energy, various fluctuations and correlation functions, including pairing ODLRO to all orders. This approach is complementary to BCS, in that these are superconducting coherent states associated with the exact model, although they are not eigenstates of the Hamiltonian.Comment: 5 pages, RevTe
    • …
    corecore