216 research outputs found

    Drop size distributions for irrigation sprinklers

    Get PDF
    A set of drop size distribution data is presented covering a wide range of sprinkler types including single nozzle impact sprinklers with straight bore and square nozzles, and sprayheads with various types of deflector plates. Drop sizes were measured by the laser-optical method and comparisons with other types of drop size measurement techniques are presented. Distributions are parameterized with an exponential function, and a method is provided to estimate the parameters given the sprinkler type, nozzle size, and pressure head

    Identification of a negative regulatory role for Spi-C in the murine B cell lineage

    Get PDF
    Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib-/-Spic+/-). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib-/- mouse spleens. Spib-/-Spic+/- B cells had restored proliferation compared with Spib-/- B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib-/-Spic+/- phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib-/-Spic+/- B cells compared with Spib-/- B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function

    PU.1 regulates Ig light chain transcription and rearrangement in pre-B cells during B cell development

    Get PDF
    B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B- deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igk locus, including Vk promoters and regions located downstream of Vk second exons. Induction of PU.1 induced Igk transcription and rearrangement. Upregulation of Igk transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igk transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development

    Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes toll-like receptor-mediated splenic B cell proliferation

    Get PDF
    Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1+/- Spib-/- [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-ĪŗB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation

    PU.1 opposes IL-7-dependent proliferation of developing b cells with involvement of the direct target gene bruton tyrosine kinase

    Get PDF
    Deletion of genes encoding the E26 transformation-specific transcription factors PU.1 and Spi-B in B cells (CD19-CreĪ”PB mice) leads to impaired B cell development, followed by B cell acute lymphoblastic leukemia at 100% incidence and with a median survival of 21 wk. However, little is known about the target genes that explain leukemogenesis in these mice. In this study we found that immature B cells were altered in frequency in the bone marrow of preleukemic CD19-CreĪ”PB mice. Enriched pro-B cells from CD19-CreDPB mice induced disease upon transplantation, suggesting that these were leukemia-initiating cells. Bone marrow cells from preleukemic CD19-CreĪ”PB mice had increased responsiveness to IL-7 and could proliferate indefinitely in response to this cytokine. Bruton tyrosine kinase (BTK), a negative regulator of IL-7 signaling, was reduced in preleukemic and leukemic CD19-CreĪ”PB cells compared with controls. Induction of PU.1 expression in cultured CD19-CreĪ”PB pro-B cell lines induced Btk expression, followed by reduced STAT5 phosphorylation and early apoptosis. PU.1 and Spi-B regulated Btk directly as shown by chromatin immunoprecipitation analysis. Ectopic expression of BTK was sufficient to induce apoptosis in cultured pro-B cells. In summary, these results suggest that PU.1 and Spi-B activate Btk to oppose IL-7 responsiveness in developing B cells

    PU.1 opposes IL-7-dependent proliferation of developing b cells with involvement of the direct target gene bruton tyrosine kinase

    Get PDF
    Deletion of genes encoding the E26 transformation-specific transcription factors PU.1 and Spi-B in B cells (CD19-CreĪ”PB mice) leads to impaired B cell development, followed by B cell acute lymphoblastic leukemia at 100% incidence and with a median survival of 21 wk. However, little is known about the target genes that explain leukemogenesis in these mice. In this study we found that immature B cells were altered in frequency in the bone marrow of preleukemic CD19-CreĪ”PB mice. Enriched pro-B cells from CD19-CreDPB mice induced disease upon transplantation, suggesting that these were leukemia-initiating cells. Bone marrow cells from preleukemic CD19-CreĪ”PB mice had increased responsiveness to IL-7 and could proliferate indefinitely in response to this cytokine. Bruton tyrosine kinase (BTK), a negative regulator of IL-7 signaling, was reduced in preleukemic and leukemic CD19-CreĪ”PB cells compared with controls. Induction of PU.1 expression in cultured CD19-CreĪ”PB pro-B cell lines induced Btk expression, followed by reduced STAT5 phosphorylation and early apoptosis. PU.1 and Spi-B regulated Btk directly as shown by chromatin immunoprecipitation analysis. Ectopic expression of BTK was sufficient to induce apoptosis in cultured pro-B cells. In summary, these results suggest that PU.1 and Spi-B activate Btk to oppose IL-7 responsiveness in developing B cells

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • ā€¦
    corecore