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The Journal of Immunology

PU.1 Regulates Ig Light Chain Transcription and
Rearrangement in Pre-B Cells during B Cell Development

Carolina R. Batista,”"*’jIE Stephen K. H. Li,""Jr Li S. Xu,*’m Lauren A. Solomon,""J”]IE and
Rodney P. DeKoter**

B cell development and Ig rearrangement are governed by cell type— and developmental stage—specific transcription factors. PU.1
and Spi-B are E26-transformation—specific transcription factors that are critical for B cell differentiation. To determine whether
PU.1 and Spi-B are required for B cell development in the bone marrow, Spil (encoding PU.1) was conditionally deleted in B cells
by Cre recombinase under control of the MbI gene in Spib (encoding Spi-B)—deficient mice. Combined deletion of Spil and Spib
resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell
stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-
deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of
chromatin immunoprecipitation—sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in
the Igk locus, including Vk promoters and regions located downstream of Vk second exons. Induction of PU.1 induced Igk
transcription and rearrangement. Upregulation of Igk transcription was impaired in small pre-B cells from PU.1/Spi-B—deficient
bone marrow. These studies reveal an important role for PU.1 in the regulation of Igk transcription and rearrangement and a

requirement for PU.1 and Spi-B in B cell development. The Journal of Immunology, 2017, 198: 1565-1574.

cell development involves ordered rearrangement of /g

loci encoding H and L chain proteins that assemble into

Abs capable of recognizing specific Ags. Stages of B cell
development can be resolved using cell surface marker expression,
as well as Ig gene rearrangement (1-3). Progenitor B (pro-B; also
known as pre-BI) cells are generated from lymphoid progenitors
and initiate D-J segment rearrangement of /gh H chain alleles.
Rearrangement of /gh alleles is completed by V-DJ rearrangement
to encode H chains that can pair with surrogate L chain proteins
and be deposited on the cell surface as a pre-BCR. Pre-BCR
signaling promotes proliferation of large pre-B cells (also known
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as pre-BII cells). Cessation of proliferation induces re-expression of
the RAG proteins RAG1 and RAG2, whose interaction is wide-
spread throughout the Ig loci at recombination signal sequences
(RSSs) (4). Finally, successful pairing of Ig k or \ L chain proteins
with IgH proteins results in expression of a BCR in immature
B cells (5). Immature B cells emigrate from the bone marrow (BM)
to the spleen to complete their maturation (6).

The mouse Igk locus contains 101 functional Vk genes, 60 Vk
pseudogenes, 4 functional Jk genes, 1 J pseudogene, and 1 Ck gene
(7, 8). The Igk locus comprises >3 MB of genomic sequence (8).
Recombination occurs in a developmental stage—specific order that
is thought to be regulated at the level of chromatin accessibility to
RAG proteins (7, 9). Accessibility is likely controlled at the level of
transcription, as supported by two lines of evidence. First, deletions
of enhancers within the Igk locus impair transcription and /g re-
combination (10, 11). Second, deletion of genes encoding histone-
modifying enzymes or transcription factors reduce transcription and
Ig recombination (8). Thus, Ig locus accessibility is regulated by
transcription factor recruitment of the transcriptional machinery to
regulatory regions within the Igk locus.

B cell development is coordinated by the expression of a number
of cell type— and developmental stage—specific transcription fac-
tors, including E2A, EBF, Pax5, Ikaros, PU.1, and Spi-B (12).
PU.1 (encoded by Spil) and Spi-B (encoded by Spib) are highly
related transcription factors of the E26 transformation—specific
(ETS) family (13). Several lines of evidence suggest that PU.1
might play an important role in the control of Igk transcription.
Igk V region promoters, as well as the intronic and 3’ enhancers in
the Igk locus, contain predicted binding sites for PU.1 (14-16).
Chromatin immunoprecipitation—sequencing (ChIP-seq) analysis
in pro-B cells reveals that PU.1 binding is widespread throughout
the Igk locus (8, 17). However, there has not been a clear dem-
onstration of a role for PU.1 in Ig transcription, accessibility, or
rearrangement in vivo. The ability of Spi-B to complement PU.1
function may have impeded a clear demonstration of PU.1 as
a regulator of Igk gene transcription (13, 18). We previously
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generated mice that delete Spi/ encoding PU.1 under control of
CD19-Cre on a Spibik background (18). These mice had im-
paired development of follicular B cells and perturbation of BM
B cell development, demonstrating a complementary role for PU.1
and Spi-B in B cell development and function (18, 19). However,
CD19-Cre does not delete alleles efficiently in BM (20), pre-
cluding an examination of PU.1 and Spi-B function in early B cell
development. We hypothesized that deletion of Spil and Spib
during early B cell development would reveal a role for PU.1 and/
or Spi-B in the transcription and rearrangement of /g genes.

To test this hypothesis, MbI*™ Spil'™°* $pib~'~ (Mbl-
CreAPB) mice were generated by crossing Spil'®'°* Spib™'~
mice to MbI™“™ mice. Mb1-Cre deletes alleles with high efficiency
in BM (20), resulting in a Spib-deficient mouse that is expected to
have a high frequency of Spil deletion during early B cell devel-
opment. Analysis of adult mice showed that deletion of Spil/ and
Spib in Mb1-CreAPB mice resulted in the absence of IgM* B cells
in the spleen. In BM, there was a specific block in B cell devel-
opment at the small pre-B cell to immature B cell transition that is
marked by successful rearrangement of Ig L chain genes. To
determine target genes of PU.1 that could explain this block, we
applied a gain-of-function approach using a PU.1/Spi-B—deficient
pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-
regulated genes were identified by integration of ChIP-seq and
RNA-sequencing (RNA-seq) data. PU.1 interacted with 23,647 sites
located near transcription start sites (TSSs) of genes involved in
immune system development. Interestingly, we observed PU.1 in-
teraction with multiple sites in Vk gene promoters, as well as sites
downstream of Vk second exons located near RSSs. Induction of
PU.1 resulted in increased transcription of Igk V genes and Igk
rearrangement. Finally, we found that upregulation of Igk tran-
scription was impaired in PU.1 and Spi-B—deficient BM pre-B cells.
These studies reveal an important role for PU.1 in Igk transcription
and rearrangement and a requirement for PU.1 and Spi-B in B cell
development.

Materials and Methods
Mice

Mb1-Cre mice were described previously (20). Mb1-Cre mice were crossed
with Spil'™"* Spib~'~ to generate Mb1-CreAPB mice. MbI ™+ Spi '™
Spib™™* (Mb1-CreAP) and MbI*'™ Spil*™* Spib™'~ or MbI*'* Spil**
Spibil* (AB) mice were used as experimental controls. C57BL/6 mice were
purchased from Charles River Laboratories (Saint-Constant, QC, Canada).
All experiments were performed in compliance with the Western University
Council on Animal Care.

Flow cytometry and cell sorting

For spleen and BM analysis, cells were prepared from 6—10-wk-old Mb1-
CreAPB, Mb1-CreAP, AB, and wild-type (WT) mice. RBCs were removed
from single-cell suspensions using hypotonic lysis. Flow cytometric
analyses were performed using an LSR II instrument (BD Immunocy-
tometry Systems, San Jose, CA). Abs were purchased from eBioscience
(San Diego, CA), BioLegend (San Diego, CA), or BD Biosciences (Mis-
sissauga, ON, Canada) and included PE-anti-CD19 (1D3), FITC-anti-BP-1
(6C3), allophycocyanin—anti-B220 (RA3-6B2), allophycocyanin—anti-IgM
(II/ 41), PE-anti-Igk (187.1), FITC-anti-IL-7R (A7R34), BV42l-anti-
B220 (RA3-6B2), PE-anti-BP-1 (6C3), FITC-anti-CD24 (M1/69), biotin—
anti-CD43 (S7), and PE/CyS5 streptavidin. BM cell sorting was performed on
a FACSAria with FACSDiva software (both from BD). Data were analyzed
using FlowJo 9.7.4 software.

Cell culture

The 660BM and i660BM cell lines used in this study were described
previously (19). Cells were cultured in IMDM (Wisent, QC, Canada)
containing 5% IL-7—conditioned medium from the J558L-IL-7 cell line
(21), 10% FBS (Wisent), 1 X penicillin/streptomycin/L-glutamine (Lonza,
Shawinigan, QC, Canada), and 5 X 107> M 2-ME (Sigma-Aldrich, St.
Louis, MO). i660BM cells were maintained in 0.5 pg/ml puromycin
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(BioBasic, Markham, ON, Canada). Cell lines were maintained in 5% CO,
atmosphere at 37°C.

RNA-seq analysis

i660BM cells were induced for 48 h with doxycycline (70 ng/pl) in the
presence of 5% IL-7—conditioned medium described above, and RNA was
extracted using an RNeasy Kit (QIAGEN, ON, Canada). Uninduced cells
were used as a control. Paired-end (mRNA-sequencing stranded) libraries
were prepared using Illumina TrueSeq Adapters. Libraries were sequenced
using an Illumina HiSEquation 2000 sequencer in paired-end mode. Data
analysis was performed as described previously (22) using the tools
available in Galaxy suite (23). Standard Illumina sequencing adaptors
(5'-AGATCGGAAGAGC-3') and short reads were removed using Trim
Galore! V0.2.8.1 in mate-paired mode with trim low quality: 20; maximum
allowed error rate: 0.1; discard reads that became shorter than length: 20.
Trimmed FASTQ files were aligned to the mouse genome (mm10) using
TopHat2 v2.0.9 in mate-paired mode, with mean inner distance between
mate pairs: 140 and SD for distance between mate pairs: 30. Assembled
transcript abundance and differential gene expression were determined
using Cufflinks/Cuffdiff v2.1.1. Reference annotation files were down-
loaded from UCSC RefSeq Genes (GRCm38/mm10) in gtf format. Cuff-
diff output genes with a fold change > 0.5 or < 0.5 (log,) were
classified as significantly upregulated or downregulated genes, respec-
tively. Transcripts presenting PU.1 ChIP peaks within 15 kb upstream or
downstream of the TSS and exhibiting significant fold change by RNA-
seq were considered PU.l-regulated genes. Functional classification
analysis was performed on predicted PU.1 target genes from the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID)
using GOTERM_BP_FAT (24). Functional protein classification of
PU.1-regulated genes was determined using the PANTHER classification
system (25).

ChIP and ChIP-seq analysis

i660BM cells were induced for 24 h with doxycycline (70 ng/ul) in the
presence of 5% IL-7-conditioned medium described above. Chroma-
tin was cross-linked with 1% paraformaldehyde for 10 min, and cross-
linking was terminated by the addition of glycine. Chromatin yielding
150-300 g was immunoprecipitated using Dynabeads Protein G (Life
Technologies) conjugated to 6 g of rabbit polyclonal anti-PU.1 Ab (Santa
Cruz Biotechnology, Santa Cruz, CA) or 6 g of rabbit polyclonal anti-IgG
Ab (Abcam, ON, Canada). Immunoprecipitated chromatin was de—cross-
linked and DNA was purified using a QIAquick PCR Purification Kit
(QIAGEN). PU.1 immunoprecipitation was validated by quantitative RT-
PCR (RT-qPCR) using two sets of primers for the E2f1 gene: a positive set
targeting the PU.1 binding site on intron 1 of the E2f/ gene and a negative
set targeting a region on intron 4 of the E2fI gene. Illumina TruSeq
DNA libraries were prepared from two biological replicates of PU.I1-
immunoprecipitated chromatin and one sample of input chromatin. Libraries
were sequenced using an Illumina HiSEquation 2000 SR100 sequencer
(Génome Québec Innovation Centre, QC, Canada). ChIP-seq data analysis
was conducted using Galaxy Suite (23). Illumina sequencing adapters were
removed using Trim Galore! Trimmed FASTQ files were aligned to the
mouse reference genome GRCm38/mm10 with Bowtie, reporting only the
best alignment for each fragment (-best) with a maximum number of two
mismatches with an average quality score = 70 (26). Experimental rep-
licate BAM aligned files were merged using merge BAM files in Galaxy.
Peaks were called using MACS1.4.1 with a mappable genome size of
1.8 X 10" bp (mm10). Peaks were called with a tag size to 100, bandwidth
of 300, and a p value cutoff for peak detection of le—07. Sequences of
regions with significant PU.1 binding were extracted using extract genomic
DNA in Galaxy. Motif discovery was performed with MEME-ChIP version
4.11.1. Functional analysis of cis-regulatory regions bound by PU.1 were
identified using CEAS (27). Heat maps of ChIP signals surrounding TSSs
were generated using deepTools2 (28).

Igk locus analysis

Transcription of Igk genes was evaluated from RNA-seq data using Cuf-
flinks and the GENCODE mouse reference that contains a complete an-
notation for the Ig gene segments (29). Average fold change expression of
Igk genes was determined from three replicates for each group (—DOX
and +DOX). Igk genes were classified as upregulated (fold change > 1.0)
or downregulated (fold change < —1.0) as a ratio between induced and
control condition. A heat map illustrating the upregulated and downregu-
lated genes was generated using GENE-E (Broad Institute, Cambridge,
MA). Regions of PU.1 binding were intersected with the reference vM9
GENCODE to correlate ChIP binding with transcripts using bedtools
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v2.22.1 (30). Regions overlapping by =1 bp were reported as PU.1-bound
transcripts and presented as Venn diagrams generated using InteractiVenn
(31). RNA-seq and ChIP-seq genome tracks were visualized in the UCSC
genome browser.

PCR and gene-expression analysis

Genomic DNA was prepared from 660BM or i660BM cells after 48 h of
PU.1 induction with doxycycline (70 ng/pl) with low (0.1 ng/pl) or high
(7.5 ng/pl) IL-7. RNA was prepared using TRIzol Reagent or an AllPrep
DNA/RNA Mini Kit (QIAGEN) from 660BM or i660BM cells after 48 h
of PU.1 induction with doxycycline (70 ng/pl) in 5 or 2.5% IL-7—conditioned
medium. cDNA was synthesized from purified RNA using an iScript cDNA
synthesis kit (Bio-Rad). cDNA was diluted to a concentration of 30 ng/pl in
RNase-free water for the RT-qPCR reactions. PCR reactions to detect Igk
rearrangements were performed as previously described (32). RT-qPCR
reactions were prepared with specific primers for the genes of interest
using SensiFAST SYBR green (Bioline, London, U.K.), and amplification
was performed on a Rotor Gene 6000 instrument (Corbett Life Sciences,
Valencia, CA). Gene expression was normalized to B2m expression, and
fold expression was calculated using the A threshold cycle method (33).
Primer sequences are shown in Supplemental Table I.

Statistical analysis

All data are graphed as mean = SEM. Statistical analysis was performed
with Prism 5.0 (GraphPad, La Jolla, CA) using ANOVA or the Student
t test, as appropriate. The p values = 0.05 were considered significant.

Availability of data

ChIP-seq and RNA-seq data have been submitted to the Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSES87316.

Results
Deletion of genes encoding PU.1 and Spi-B impairs B cell
development at the pre-B to immature B cell transition

It was shown that mice lacking PU.1 or Spi-B in the B cell lineage
have relatively normal B cell development and mild impairment of
B cell function (34-36). However, mice lacking PU.1 and Spi-B in
the B cell lineage (CdI9*“™ Spil™™'°* Spib~'~ mice) have re-
duced numbers of B cells, suggesting that these factors are im-
portant during development (18, 19). We sought to determine
whether efficient deletion of PU.1 and Spi-B in the early stages of
B cell development in BM would result in a block at a specific
stage. Mice that delete Spil under control of the Cd79a (Mb-1)
gene, which deletes alleles efficiently in BM (20), were bred to
Spib~'~ mice to generate Mb1-CreAPB mice (lacking PU.1 and
Spi-B), Mb1-CreAP mice (lacking PU.1), and AB mice (lacking
Spi-B). To assess B cell development, the frequency of mature
B cells in the spleen of 6—10 wk old mice was determined. Mb1-
CreAPB mice had few B220" [gM™ B cells in the spleen compared
with WT or AB mice (Fig. 1). Therefore, PU.1 and Spi-B are
required to generate splenic B cells. To determine the stage at
which the block of B cell development was occurring, the fre-
quencies of developing B cells in BM of 6-10-wk-old Mbl-
CreAPB mice were measured using flow cytometry according to
the cell surface marker scheme described by Hardy et al. (3).
There were no significant differences in the frequencies of B220*
cells among the groups (Fig. 2A, 2B). However, immature BM
B cells (B220* CD43") were increased in frequency and mature
BM B cells (B220" CD43 ") were decreased in frequency in Mb1-
CreAPB mouse BM compared with Mbl-CreAP, AB, and WT
mouse BM (Fig. 2C-E). As a proportion of total B220" cells, there
were reduced frequencies of cells at the pre—pro B cell stage, or
fraction A, in Mb1-CreAPB, Mb1-CreAP, and AB mice compared
with WT mice (Fig. 2F, 2G). There were increased frequencies of
fraction B (pro-B/pre-BI) cells and fraction C (pre-B, large pre-B/
pre-BII) cells in Mb1-CreAPB mouse BM compared with controls
(Fig. 2F, 2G). Mb1-CreAPB mice had double the frequency of

1567

fraction C BM cells compared with controls (Fig. 2F, 2G). None of
the groups analyzed showed significant differences in the fre-
quencies of fraction D (small pre-B) cells. However, fraction E
(immature B cells) and fraction F (mature recirculating B cells)
were nearly absent in Mb1-CreAPB BM. Strikingly, there were no
B cells expressing high levels of surface Ig in 6-10-wk-old Mb1-
CreAPB mice (Fig. 2F, 2G). These results demonstrate a critical
requirement for PU.1 and Spi-B in the transition from small pre-
B cells to immature B cells.

Analysis of PU.1 target genes in the pro-B cell line i660BM

To identify target genes of PU.1 that could explain the developmental
block in Mb1-CreAPB mouse BM, we applied a gain-of-function
approach using a PU.l-inducible pro-B cell line (Fig. 3A). The
660BM cell line is fully deleted for Spi/ and Spib, has a nonpro-
ductive rearrangement of the Igh locus, and is germline for /gk locus
rearrangement (19) (data not shown). The i660BM cell line is in-
fected with a two-vector inducible system in which PU.1 is inducible
using 70 ng/ml doxycycline (19). To define sites of PU.1 interaction,
anti-PU.1 ChIP was performed on chromatin prepared from i660BM
cells induced with (+DOX) or without (—DOX) 70 ng/ml doxycy-
cline for 24 h. [llumina sequencing was performed on two biological
replicates of PU.1-induced chromatin, as well as input chromatin. An
average of 70 million 100-bp single-end reads were obtained. Reads
were aligned to the mouse genome (mm10), and data were analyzed
using the Galaxy suite of software tools. PU.1 was found to be as-
sociated with 49,385 unique genomic regions. The top interaction
motif recovered for all PU.1-associated regions was the ETS motif
containing the core A/5'-GGAA-3’ sequence (Fig. 3B). PU.1 was
found to associate primarily with distal intergenic regions and gene
bodies, similar to what was reported previously for PU.1 in splenic
B cells (Fig. 3C) (37). Seventeen percent of PU.I-interaction sites
were at annotated gene promoters, and 23,647 peaks were located
within 15 kb of annotated TSSs (Fig. 3C, 3D).

Next, RNA-seq analysis was performed on three biological
replicates of RNA prepared from i660BM cells induced or not with
70 ng/ml doxycycline for 48 h. An average of 60 million 100-bp
paired-end reads were obtained per sample. RNA-seq reads were
aligned to the mouse genome (mm10) using TopHat, and differ-
ential gene expression was determined using Cufflinks suite. Genes
presenting a log,-fold change in expression > 0.5 were considered
in our analysis. Using these criteria, transcript levels of 811 genes
were significantly increased upon PU.1 induction, and transcript
levels of 531 genes were significantly decreased upon PU.1 in-
duction (Supplemental Table II).

To identify PU.1-regulated genes, the genomic region that in-
teracts with PU.1 was associated with differentially expressed
transcripts. A total of 793 of 811 upregulated genes and 521 of 531
downregulated genes were associated with PU.1 binding sites
located within 15 kb of the TSS, suggesting that these genes were
regulated directly by PU.1 (Fig. 3E). As shown in Fig. 3F, 670
PU.1-associated genes were upregulated and 465 PU.1-associated
genes were downregulated with fold changes in expression < log,
(1.5). However, 141 genes were upregulated > log, (1.5)-fold, of
which 12 were upregulated > log, (5)-fold. Sixty-six genes were
downregulated > log, (1.5)-fold, of which five were downregu-
lated > log, (3)-fold (Fig. 3F). In summary, 793 upregulated gene
transcripts and 521 downregulated gene transcripts were associ-
ated with PU.1 peaks and, therefore, were considered direct tar-
gets of PU.1 regulation.

Gene ontology analysis of PU.I targets

Upregulated and downregulated genes associated with PU.1
binding in i660BM cells were explored further using gene ontology
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analysis. Protein-classification analysis showed that 11% of PU.1-
upregulated or -downregulated genes encoded proteins related to
nucleic acid binding, whereas 7% of upregulated or downregulated
genes encoded transcription factors (Fig. 4A). PU.l-regulated
genes encoded cell signaling molecules, cell receptors, and cel-
lular transporters, among others, illustrating a broad role for PU.1
in regulating diverse cellular processes (Fig. 4A, 4B). Gene on-
tology analysis using DAVID showed that upregulated genes were
classified into biological processes including immune response,
cell activation, and lymphocyte activation (Fig. 4C). Downregu-
lated genes were classified into biological pathways including
nucleosome assembly, chromatin assembly, and nucleosome or-
ganization (Fig. 4C). These genes included a number of genes
previously shown to be directly regulated by PU.1, such as Bink
(38), 117r (39), and E2f1 (40) (Fig. 4B). Interestingly, Ragl/Rag2
was the fifth most upregulated gene and was associated with an
upstream peak in PU.1 interaction (Fig. 4D). Id2, an inhibitor of
E2A transcription factor activity, was a downregulated gene
that was associated with a peak in PU.1 interaction (Fig. 4E).
RT-gPCR analysis confirmed upregulation of Ragl, Rag2, and
Spil transcript levels, as well as downregulation of /d2 mRNA
transcript levels (Fig. 4F). These results suggest that PU.1 directly
regulates genes involved in BCR signaling, as well as /g recom-
bination and/or accessibility.

Regulation of Igk transcription and recombination by PU.I

Upregulation of Rag mRNA transcripts and downregulation of /d2
mRNA transcripts suggested that PU.1 may be involved in the
regulation of Igk rearrangement during B cell development. Igk
V-] rearrangement is preceded by increased transcription of
V region genes, as well as of sterile transcripts initiating in reg-
ulatory regions (9, 41). Analysis of ChIP-seq data identified 179
peaks in PU.1 interaction within the 3-Mb Igk locus, of which
60 were located in GENCODE-annotated Igk genes (Fig. 5A).
Analysis of RNA-seq data revealed widespread changes in Igk
V region mRNA transcript levels upon PU.1 induction (Fig. 5B).
For 166 annotated Igk genes, 69 were unchanged, 42 were
downregulated, and 55 were upregulated in the RNA-seq analysis
(Fig. 5B, Supplemental Table III). Thirty peaks in PU.1 interaction
were associated with increased upregulated Igk V transcripts, and
10 peaks in PU.1 interaction were associated with downregulated
Igk V transcripts (Fig. 5A). Igk V genes that were upregulated
upon PU.1 induction included IgkvI-135, Igkvi0-96, Igkv4-57,
Igkv6-13, and Igkv4-73 (Fig. 5B). Each of these Igk V genes was
associated with at least one peak in PU.1 interaction (Fig. 5C, left
panels). Quantitative PCR analysis confirmed that each of these
Igk V genes was inducible by PU.1, and reduced IL-7 concen-

tration resulted in increased induction of transcription by PU.1
(Fig. 5C, right panels). PU.1 also was shown to interact with the
2-4 and 3-1 enhancers in the Ig\ locus (42). Interestingly, in-
duction of PU.1 increased Ig\] mRNA transcript levels (Fig. 5D).
These results suggest that PU.1 directly regulates Igk and Ig\ V
region transcription in i660BM cells.

Interestingly, there were two distinct patterns of PU.1 interaction
with Ig V genes. PU.1 interacted with the promoters of 11 V genes,
with a region downstream of the second exon of 26 V genes,
and with both the promoter and a region downstream of the second
exon of 14 genes (Fig. SE, Supplemental Table IV). For the Igkv4
family, PU.1 interacted with 11 sites downstream of the second
exon and only one site in a promoter. For the IgkV6 family, PU.1
interacted with both the promoter and a site downstream of the
second exon for six members (Fig. 5C, 5F). A total of 32 of 40 PU.1
sites downstream of V region second exons were located an average
of 91 bp from the RSS heptamer sequence 5'-CACAGTG-3'.
MEME analysis of the 32 genomic regions associated with PU.1
binding sites located downstream of V region second exons
revealed a 12-bp RSS as the most frequently discovered motif (Fig.
5G). The PU.1 motif was also enriched in these sequences (data not
shown). Taken together, these results indicate that PU.1 interacts
with a number of sites downstream of Igk V region second exons
that are located close to RSSs. This suggests that PU.1 might be
involved in the regulation of chromatin accessibility near RSSs.

Because PU.1 interacts with Igk V region genes, induces Igk V
region transcription, and induces Rag transcription, we hypothe-
sized that PU.1 induction in i660BM cells coupled with reduced
IL-7 concentration might be sufficient to induce Igk V-] rear-
rangement in i660BM cells. To confirm this, Igk V-J rearrange-
ment was measured using DNA prepared from i660BM cells in
which PU.1 was induced with doxycycline in the presence of a
high or low concentration of IL-7. DNA prepared from WT spleen
cells was used as a control (Fig. 5H, right side). Low IL-7 con-
centration or PU.1 induction resulted in low levels of Igk V-J
rearrangement in i660BM cells (Fig. SH, left side). Igk V-J rear-
rangement was robustly detected in i660BM cells in which PU.1
was induced with a low concentration of IL-7 (Fig. 5H, left side).
In parent 660BM cells that did not express PU.1, reduced IL-7
concentration was not sufficient to induce /gk V-J rearrangement
(Fig. 5H, right side). We conclude that induction of PU.1 ex-
pression, coupled with reduced IL-7 concentration, is sufficient to
induce Igk V-J rearrangement in a cultured pro-B cell line.

Reduced Igk transcription in BM pre-B cells from Mb1-CreA PB mice

Igk V gene transcription is upregulated during the large pre-B
(fraction C) to small pre-B (fraction D) transition (43). BM
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FIGURE 2. Deletion of PU.1 and Spi-B blocks B cell development in the BM at the pre-B cell transition. (A) Representative graph showing the percentage
of B220™ cells in WT, Mb1-CreAP, AB, and Mb1-CreAPB mice. (B) Percentage of B220" cells in BM of WT, Mb1-CreAP, AB, and Mb1-CreAPB mice. (C)
Representative flow cytometric analysis showing the percentage of B220* CD43™ and B220* CD43" cells in WT (left panel) and Mb1-CreAPB (right panel)
mice. (D) Percentage of B220" CD43" cells in BM of WT, Mb1-CreAP, AB, and Mb1-CreAPB mice. (E) Percentage of B220" CD43™ cells in BM of WT,
Mb1-CreAP, AB, and Mb1-CreAPB mice. (F) Representative flow cytometric analysis according to the Hardy scheme representing the frequency of developing
B cells in fractions A-C in WT, Mb1-CreAP, AB, and Mb1-CreAPB mice (gated on B220* CD43"* population) (upper panels). Flow cytometric analysis
according to the Hardy scheme representing the frequency of developing B cells in fractions D-F in WT, Mb1-CreAP, AB, and Mb1-CreAPB mice (gated on
B220" CD43™ population) (lower panels). (G) Percentage of B220" cells in BM of WT, Mb1-CreAP, AB, and Mb1-CreAPB mice in fractions (A-F). WT,
n = 10; Mb1-CreAP, n = 8; AB, n = 9; and Mb1-CreAPB, n = 12. Data are mean = SEM. *p = 0.05, **p = 0.01, **¥*p < 0.001, ****p < 0.0001.

B cell development was blocked at the small pre-B cell stage in
the absence of PU.1 and Spi-B (Fig. 1). Because induction of PU.1
resulted in increased Igk V region transcript levels and Igk V-J
recombination, we hypothesized that Mb1-CreAPB pre-B cells
might have a reduced ability to activate Igk V-J transcription.

To test this, fraction C and fraction D pre-B cells were enriched
from the BM of Mb1-CreAPB mice, or AB mice as controls, using
cell sorting; the gating strategy is shown in Fig. 2F. Fraction E
cells were not enriched, because this fraction was absent in Mb1-
CreAPB mice (Fig. 2G). Quantitative PCR was used to determine
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changes in transcript levels of Igk V genes with which PU.1
interacted. We found that, in BM cells from AB mice, Igk V gene
transcription was upregulated during the fraction C to fraction D
transition for IgkvI-135, Igkvi2-98, Igkvi2-44, Igkv3-5, and the
sterile transcript Glk-1 (Fig. 6A-F). In contrast, transcript levels
for Btk and the control gene (3-actin did not change (Fig. 6G, 6H).
In BM cells enriched from Mb1-CreAPB mice, mRNA transcript
levels for Igkvi-135, Igkvi2-98, Igkvi2-44, Igkv3-5, and Glk-1
failed to increase during the fraction C to fraction D transition
(Fig. 6B-F). Transcript levels for Spi/ and its target gene (Btk)
decreased, consistent with deletion of Spil at this transition,
whereas the control gene (-actin did not change from fraction C
to fraction D (Fig. 6G-I). These data demonstrate that PU.1 and
Spi-B are important for inducing transcription of certain Igk V
genes during B cell development in the BM and suggest that the
absence of PU.1 and Spi-B might lead to reduced Igk V region
accessibility and V-J recombination.

Discussion

In this study, we showed that B cell development is blocked in mice
that delete the Spi/ gene encoding PU.1 under control of the Mb1
locus, which are also germline knockout for Spib (Mb1-CreAPB
mice). Adult Mb1-CreAPB mice did not have splenic B cells, and
few surface IgM* B cells were present in BM, suggesting a block
in B cell development starting at the pre-B cell stage. Identifying
target genes of PU.1 and/or Spi-B might explain this block in
B cell development; therefore a Spil/Spib-deleted IL-7—dependent
pro-B cell line was used in which PU.1 expression can be induced
using doxycycline (i660BM cells). RNA-seq and anti-PU.1 ChIP-
seq experiments were performed to determine the genome-wide
target genes of PU.1 in this model. These experiments confirmed a
number of previously identified PU.1 target genes involved in the
pro-B to pre-B cell developmental transition. Unexpectedly, the Rag
locus was also found to be a direct target of PU.1 induction. Closer
examination revealed that PU.1 interacted with 179 sites within the
Igk locus, of which 60 sites were located within V genes, including
at V gene promoters and near RSSs. An increase in PU.1 expres-
sion, combined with reduced IL-7 concentration, induced Igk

15.0kp

rearrangement. Finally, we found that Igk V region mRNA tran-
script levels were not increased at the pro-B to pre-B cell transition
in Mb1-CreAPB mice. These results show that PU.1 directly reg-
ulates Igk locus transcription and suggest that PU.1 is an important
regulator of /gk locus accessibility during B cell development.

Comparison of BM B cell development in Mb1-CreAPB mice with
that in control mice revealed a relative increase in the frequency of
pre-BIl/large pre-B cells (fraction C), no difference in the frequency
of small pre-B cells (fraction D), and a near absence of immature
sIgM* B cells (fraction E). These results are most consistent with a
block in B cell development at the stage when Ig L chain recom-
bination is taking place in small pre-B cells. Previous analysis of
CD19-CreAPB mice, which did not delete alleles efficiently in BM,
showed a relative increase in immature B cell frequencies in BM but
a decrease in mature recirculating B cells (fraction F) and in the
frequency of splenic follicular B cells. The differences between
these two models suggest that PU.1 and Spi-B play important roles
in B cell development at late, as well as early, stages.

B cell-specific deletion of the gene encoding PU.1 in mice (34,
35) or deletion of the gene encoding Spi-B in mice (44) resulted in
relatively mild defects in B cell development. Similarly, deletion
of the Irf4 or IrfS gene resulted in mild B cell developmental
defects (45, 46). Combined deletion of Spi/ and Irf8 resulted in
mild impairment of B cell development, whereas combined de-
letion of Spil and Irf4 resulted in impaired B cell development at
the pre-B cell stage (36). Strikingly, combined deletion of Irf4 and
Irf8 resulted in a block in B cell development at the pre-B cell
stage (47). In this study, we showed that combined deletion of
Spil and Spib results in a block in B cell development at the
pre-B cell stage. Collectively, these studies reveal a critically im-
portant PU.1/Spi-B/IRF4/IRF8 regulatory axis for pre-B cell de-
velopment. PU.1 and Spi-B interact interchangeably with IRF4 or
IRF8 to regulate genes containing ETS-IRF composite elements
(EICEs) (48). Recently, it was shown that ~50% of PU.1 binding
sites in pro-B cells are at EICEs, suggesting that this regulatory
element may control a large number of genes in developing B cells
(36). These studies collectively suggest that genes important for
early B cell development require activation through EICEs to
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FIGURE 4. Characterization of PU.1-regulated genes. (A) Gene ontology data analysis showing the PANTHER protein classification of PU.1-regulated
genes (left panel, upregulated; right panel, downregulated). (B) Examples of PU.1-upregulated (1) and downregulated (}) genes according to the protein
classification ontology analysis. Numbers indicate log, fold change. (C) Gene ontology analysis by DAVID identifying the biological processes related to
PU.1-regulated genes (left panel, upregulated; right panel, downregulated). (D) UCSC genome browser tracks of PU.1 ChIP and RNA-seq experiments
showing Rag2 and Ragl genes. (E) UCSC genome browser tracks of PU.1 ChIP and RNA-seq experiments showing /d2 gene. (F) Confirmation of changes
in gene expression. RT-qPCR analysis for the indicated genes was performed on four biological replicates of RNA prepared from uninduced (—DOX) or
70 ng/ml doxycycline-induced (+DOX) i660BM cells cultured in 2.5% IL-7—conditioned medium. *p = 0.05, ***p = 0.001, ****p = 0.0001.

promote their expression. More work is necessary to identify key
EICE-regulated target genes.

PU.1 was implicated in the regulation of Ig transcription in
numerous studies. In 1991, PU.1 was recognized to interact with
the Igk 3’ enhancer cooperatively with IRF4 (15, 49). Transgenic
studies implicated the PU.1 binding site in the Igk 3’ enhancer in

the regulation of the developmental stage specificity of V-J joining
(50). In 1995, PU.1 was identified as an NF capable of interacting
with pyrimidine-rich sequences in the Vk19 promoter (14). PU.1
binding sites were predicted in numerous V region promoters of
the Igk locus (16). Previous studies showed that PU.1 interacts
with numerous sites in the Igk locus in the B cell lineage. In
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mature splenic B cells, PU.1 was shown to interact with 45 sites in
the 3-Mb Igk locus (37). In pro-B cells, PU.1 was shown to in-
teract with 181 sites in the Igk locus (17). This study closely
agrees with our result of 179 total PU.1 binding sites in the Igk
locus, and 74 of these sites were in common, with 35 of these sites in
common in all three studies. Taken together, these studies corre-
spond with our identification of PU.1 binding sites in the Igk locus.

The 3’ enhancer of the Igk locus is critical for the cell type
and developmental stage specificity of V-J rearrangement (10,
50-52). STATS binding induced by IL-7 signaling is a critically

important repressor of Igk transcription to prevent accessibility
and rearrangement during proliferation of large pre-B/pre-BII
cells (53). PU.1 can compete with STATS for interaction with
the Igk 3’ enhancer to regulate Igk transcription (54). Consis-
tent with these studies, our results showed that PU.1 induced
Igk transcription and rearrangement more efficiently when IL-7
concentration was reduced (Fig. 5). Our results are consistent
with PU.1 being an important factor for inducing Igk tran-
scription and accessibility when developing pre-B cells migrate
away from high IL-7 concentrations (55).
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FIGURE 6. Absence of PU.1 and Spi-B in vivo results in reduced levels of Igk transcripts in small pre-B cells. (A) Schematic diagram of the mouse /gk
locus showing the variable (V) region, the joining and constant regions (C-V regions), and the gene segments assessed in this study by RT-qPCR. Variable
gene segments are highlighted, and the Glk-1 (k°) transcript is also indicated. (B-E) RT-qPCR showing the fold induction of the Igkvi-135, Igkv12-98,
Igkv12-44, and Igkv3-5 genes in developing B cells from fraction C (large pre-B cells) and fraction D (small pre-B cells) of AB and Mb1-CreAPB mouse
BM. (F) RT-qPCR showing the fold induction of the Glk-I mRNA transcript in developing B cells from fraction C (large pre-B cells) and fraction D (small
pre-B cells) of AB and Mb1-CreAPB mouse BM. (G-1) RT-qPCR showing the fold induction of Bactin, Btk, and Spil mRNA transcripts in developing B
cells from fraction C (large pre-B cells) and fraction D (small pre-B cells) of AB and Mb1-CreAPB mouse BM. *p = 0.05, **p =< 0.01, ***p =< 0.001,

*#%p = 0.0001.

Igx V region transcription is closely associated with accessi-
bility of the recombinase apparatus and initiation of Igk V-J re-
combination (9, 41). The results presented in Fig. 6 demonstrate
that Igk V region transcripts are not appropriately upregulated in
the absence of PU.1 and Spi-B. This suggest that PU.1 and Spi-B
are important regulators of Igk V region transcription, accessi-
bility, and rearrangement. The absence of IgM* B cells in Mbl-
CreAPB mice suggests that Ig N transcription may also be impaired
in the absence of PU.1 and Spi-B. Consistent with this idea, in-
duction of PU.1 activated Ig\l transcription in i660BM cells
(Fig. 5D). We previously demonstrated that /g\ transcription was
reduced in PU.1/Spi-B double-knockout pro-B cell lines (56). In
summary, we expect that reduced Igk V region transcription
in fraction D small pre-B cells lacking PU.1 and Spi-B results in
impaired Igk V region accessibility and impaired Igk recombina-
tion, which lead to a block in B cell development at the small pre-
B cell stage. These studies reveal an important role for PU.1 in Igk
transcription and rearrangement, as well as a requirement for PU.1
and Spi-B in B cell development.
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