38 research outputs found

    Loss of HP1α alters nuclear integrity to promote cellular invasion : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Manawatū, New Zealand

    Get PDF
    The onset of invasion is a key step towards the development of metastatic cancer. For a cell to invade through interstitial spaces in the tissue requires a reduction in nuclear rigidity as the cell needs to deform to squeeze through small spaces. Heterochromatin Protein 1α (HP1α) is a protein that defines domains of heterochromatin, the highly compact regions of the genome, and is essential for maintaining the appropriate patterns of gene expression and genome stability. Loss or reduction of HP1α has been correlated with an increase in invasive potential in human tumours. Using an established model of Drosophila melanogaster epithelial cell invasion, the causative role HP1α plays in suppressing cellular invasive is confirmed within an epithelial tissue microenvironment. This model also demonstrates that loss of the Drosophila melanogaster HP1 homologue synergistically promotes cellular invasion in conjunction with an activated malignant signalling pathway. Importantly, human HP1α is shown to rescue this highly invasive Drosophila phenotype and demonstrates the relevance of this model to human disease, and its use for exploring protein interactions in a cellular microenvironment. As loss of nuclear integrity has been linked to a reduction in peripheral heterochromatin, the biophysical mechanisms by which HP1α acts as a suppressor of invasive potential were explored in the poorly invasive MCF7 breast cancer cell line with constitutive HP1α knock-down. These cells with reduced HP1α expression had a significant loss of nuclear membrane integrity and stiffness. The underlying nuclear lamina meshwork and associated peripheral heterochromatin was disrupted. This was associated with an increased solubility of lamina proteins, particularly lamin A, as well as the altered localisation of a number of peripheral nuclear proteins. In summary, this work established the important contribution of HP1α to the mechanical integrity of the nucleoskeleton and the role HP1α plays in suppressing malignant signalling pathways that promote cell invasion

    Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases.

    Get PDF
    To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiological information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public health epidemic control efforts

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Building TiO2-doped magnetic biochars from Citrus sinensis peels as low-cost materials for improved dye degradation using a mathematical approach

    No full text
    TiO2-doped ferromagnetic (TiFeBC) composites were synthesised from lignocellulosic orange peel biochar (BC) material using co-precipitation method. Several characterization techniques (XRD, SEM, EDX, FT-IR, EIS and N2 adsorption-desorption) were used to confirm the presence of Fe3O4 and TiO2 particles impregnated within the carbonaceous matrix of the biochar. Electrochemical impedance spectroscopy revealed that the sample obtained using 2.5 wt. % of TiO2 (TiFeBC1) has the lowest charge transfer resistance compared to those of 5 wt.% and 7.5 wt.%. TiFeBC1 was used for the optimization of the degradation of reactive yellow-145 from Cameroon Textile Industry using Fenton process. Optimum operational parameters were found to be: pH of 2.02, initial dye concentration of 75 mg/L, mass of material of 5998 mg/L and a time of 16.01 min. Using the CCD of the Response Surface Methodology, a predicted optimum response of 98.89 % was obtained in agreement with an experimental response of 97.95 % of dye degradation. Analysis of variance presented good correlation between the experimental data and the postulated model (R2 = 94.24 % and R2adjusted = 87.52 %). The degradation reaction was found to obey the first order kinetic rate law (R2 = 0.986) with respect to the dye. The study of interfering processes revealed that adsorption and H2O2/daylight-assisted degradation are two phenomenon that could possibly contribute to a negligible extent to the elimination of the dye during the Fenton process. The stability and efficiency of TiFeBC1 was evaluated over ten cycles and the material was found to lose approximately 5 % of its efficiency

    Depletion of HP1α alters the mechanical properties of MCF7 nuclei

    No full text
    Within the nucleus of the eukaryotic cell, DNA is partitioned into domains of highly condensed, transcriptionally silent heterochromatin and less condensed, transcriptionally active euchromatin. Heterochromatin protein 1α (HP1α) is an architectural protein that establishes and maintains heterochromatin, ensuring genome fidelity and nuclear integrity. Although the mechanical effects of changes in the relative amount of euchromatin and heterochromatin brought about by inhibiting chromatin-modifying enzymes have been studied previously, here we measure how the material properties of the nuclei are modified after the knockdown of HP1α. These studies were inspired by the observation that poorly invasive MCF7 breast cancer cells become more invasive after knockdown of HP1α expression and that, indeed, in many solid tumors the loss of HP1α correlates with the onset of tumor cell invasion. Atomic force microscopy (AFM), optical tweezers (OT), and techniques based on micropipette aspiration (MA) were each used to characterize the mechanical properties of nuclei extracted from HP1α knockdown or matched control MCF7 cells. Using AFM or OT to locally indent nuclei, those extracted from MCF7 HP1α knockdown cells were found to have apparent Young’s moduli that were significantly lower than nuclei from MCF7 control cells, consistent with previous studies that assert heterochromatin plays a major role in governing the mechanical response in such experiments. In contrast, results from pipette-based techniques in the spirit of MA, in which the whole nuclei were deformed and aspirated into a conical pipette, showed considerably less variation between HP1α knockdown and control, consistent with previous studies reporting that it is predominantly the lamins in the nuclear envelope that determine the mechanical response to large whole-cell deformations. The differences in chromatin organization observed by various microscopy techniques between the MCF7 control and HP1α knockdown nuclei correlate well with the results of our measured mechanical responses and our hypotheses regarding their origin
    corecore