233 research outputs found

    The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    Get PDF
    The focus was in two broad areas during the most recent 6-month period: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings are described in the accompanying appendices

    Constraints on crustal rheology and age of deformation from models of gravitational spreading in Ishtar Terra, Venus

    Get PDF
    Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation

    The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    Get PDF
    The focus of the research was in two broad areas: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings of the research are described in the accompanying appendices. The first two and the fourth appendices are reprints of papers recently submitted for publication, and the third is the abstract of a recently completed thesis supported by this project

    Origin and thermal evolution of Mars

    Get PDF
    The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented

    An event study to provide validation of TING and CMIT geomagnetic middle-latitude electron densities at the F2 peak

    Get PDF
    [1] The coupled thermosphere-ionosphere magnetosphere (CMIT) model and the Thermosphere Ionosphere Nested Grid (TING) model have been run to simulate the 15 May 1997 interplanetary coronal mass ejection\u27s (ICME) effects on the Earth\u27s ionosphere and thermosphere. Comparisons were made between these model runs, the IRI-2007 model, and geomagnetic middle-latitude ionosonde data (NmF2) from the World Data Center to determine how well the models simulated the event and to understand the causes of model-data disagreement. The following conclusions were drawn from this study: (1) skill scores were more often negative than positive on average; (2) the best and the worst skill scores occurred on the recovery day; (3) the line plots comparing models to data look better than the skill scores might suggest; (4) skill scores are significantly affected by timing issues and large, short-duration variability; (5) skill scores give an indication of the relative ability of one model relative to another, rather than an absolute statement of model accuracy; (6) the models capture negative storm effects better than they capture positive storm effects; (7) the TING model captured many short duration features seen in the data at high middle latitude stations that result from changes in the size of the auroral oval; (8) CMIT overestimates the energy driving changes in NmF2, whereas TING provides approximately the correct energy input as a result of the saturation effects on potential that are included in TING; and (9) both TING and CMIT electron densities decreased too rapidly after sunset

    Sinusoidal Excitations in Two Component Bose-Einstein Condensates

    Full text link
    The non-linear coupled Gross-Pitaevskii equation governing the dynamics of the two component Bose-Einstein condensate (TBEC) is shown to admit pure sinusoidal, propagating wave solutions in quasi one dimensional geometry. These solutions, which exist for a wide parameter range, are then investigated in the presence of a harmonic oscillator trap with time dependent scattering length. This illustrates the procedure for coherent control of these modes through temporal modulation of the parameters, like scattering length and oscillator frequency. We subsequently analyzed this system in an optical lattice, where the occurrence of an irreversible phase transition from superfluid to insulator phase is seen.Comment: 6 pages, 1 figur

    Do risk factors for suicidal behavior differ by affective disorder polarity?

    Get PDF
    BACKGROUND: Suicide is a leading cause of death and has been strongly associated with affective disorders. The influence of affective disorder polarity on subsequent suicide attempts or completions and any differential effect of suicide risk factors by polarity were assessed in a prospective cohort. METHODS: Participants with major affective disorders in the National Institute of Mental Health Collaborative Depression Study were followed prospectively for up to twenty-five years. A total of 909 participants meeting prospective diagnostic criteria for major depressive and bipolar disorders were followed through 4,204 mood cycles. Suicidal behavior was defined as suicide attempts or completions. Mixed-effects, grouped-time survival analysis assessed risk of suicidal behavior and differential effects of risk factors for suicidal behavior by polarity. In addition to polarity, the main effects of age, gender, hopelessness, married status, prior suicide attempts, and active substance abuse were modeled with mood cycle as the unit of analysis. RESULTS: After controlling for age of onset, there were no differences in prior suicide attempts by polarity though bipolar participants had more prior severe attempts. During follow-up, forty cycles ended in suicide and 384 cycles contained at least one suicide attempt. Age, hopelessness, and active substance abuse but not polarity predicted suicidal behavior. The effects of risk factors did not differ by polarity. CONCLUSIONS: Bipolarity does not independently influence risk of suicidal behavior or the influence of well-established suicide risk factors within affective disorders. Suicide risk assessment strategies may continue to appraise these common risk factors without regard to mood polarity
    • …
    corecore