10 research outputs found

    The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications

    Get PDF
    Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.Emma L. Solly, Peter J. Psaltis, Christina A. Bursill, and Joanne T. M. Ta

    MicroRNAs as therapeutic targets and clinical biomarkers in atherosclerosis

    Get PDF
    Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.Emma L. Solly, Catherine G. Dimasi, Christina A. Bursill, Peter J. Psaltis, and Joanne T.M. Ta

    Assessing Africa-Wide Pangolin Exploitation by Scaling Local Data

    Get PDF
    Overexploitation is one of the main pressures driving wildlife closer to extinction, yet broad-scale data to evaluate species' declines are limited. Using African pangolins (Family: Pholidota) as a case study, we demonstrate that collating local-scale data can provide crucial information on regional trends in exploitation of threatened species to inform conservation actions and policy. We estimate that 0.4-2.7 million pangolins are hunted annually in Central African forests. The number of pangolins hunted has increased by ∼150% and the proportion of pangolins of all vertebrates hunted increased from 0.04% to 1.83% over the past four decades. However, there were no trends in pangolins observed at markets, suggesting use of alternative supply chains. The price of giant (Smutsia gigantea) and arboreal (Phataginus sp.) pangolins in urban markets has increased 5.8 and 2.3 times respectively, mirroring trends in Asian pangolins. Efforts and resources are needed to increase law enforcement and population monitoring, and investigate linkages between subsistence hunting and illegal wildlife trade

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Elevated HDL-bound miR-181c-5p level is associated with diabetic vascular complications in Australian Aboriginal people

    No full text
    Published: 02 March 2021Aims/hypothesis: Diabetes is a major burden on Australia’s Indigenous population, with high rates of disease and vascular complications. Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. MicroRNAs (miRNAs) are key players in the regulation of angiogenesis. HDL-cholesterol (HDL-c) levels are inversely associated with the risk of developing diabetic complications and HDL can carry miRNAs. HDL-miRNA profiles differ in disease states and may present as biomarkers with the capacity to act as bioactive signalling molecules. Recent studies have demonstrated that HDL becomes dysfunctional in a diabetic environment, losing its vasculo-protective effects and becoming more pro-atherogenic. We sought to determine whether HDL-associated miRNA profiles and HDL functionality were predictive of the severity of diabetic vascular complications in Australia’s Indigenous population. Methods: HDL was isolated from plasma samples from Indigenous participants without diabetes (‘Healthy’), with type 2 diabetes mellitus (‘T2DM’) and with diabetes-associated macrovascular complications (specifically peripheral artery disease, ‘T2DM+Comp’). To assess HDL angiogenic capacity, human coronary artery endothelial cells were treated with PBS, reconstituted HDL (rHDL, positive control) or isolated HDL and then exposed to high-glucose (25 mmol/l) conditions. The expression levels of two anti-angiogenic miRNAs (miR-181c-5p and miR-223-3p) and one pro-angiogenic miRNA (miR-27b-3p) were measured in the HDL fraction, plasma and treated human coronary artery endothelial cells by quantitative real-time PCR. In vitro endothelial tubule formation was assessed using the Matrigel tubulogenesis assay. Results: Strikingly, we found that the levels of the anti-angiogenic miRNA miR-181c-5p were 14-fold higher (1454 ± 1346%) in the HDL from Aboriginal people with diabetic complications compared with both the Healthy (100 ± 121%, p < 0.05) and T2DM (82 ± 77%, p < 0.05) groups. Interestingly, we observed a positive correlation between HDL-associated miR-181c-5p levels and disease severity (p = 0.0020). Under high-glucose conditions, cells treated with rHDL, Healthy HDL and T2DM HDL had increased numbers of tubules (rHDL: 136 ± 8%, p < 0.01; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 124 ± 5%, p < 0.05) and branch points (rHDL: 138 ± 8%, p < 0.001; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 127 ± 5%, p < 0.01) concomitant with elevations in mRNA levels of the key hypoxia angiogenic transcription factor HIF1A (rHDL: 140 ± 10%, p < 0.01; Healthy HDL: 136 ± 8%, p < 0.01; T2DM HDL: 133 ± 9%, p < 0.05). However, this increase in angiogenic capacity was not observed in cells treated with T2DM + Comp HDL (tubule numbers: 113 ± 6%, p = 0.32; branch points: 113 ± 5%, p = 0.28; HIF1A: 117 ± 6%, p = 0.43), which could be attributed to the increase in cellular miR-181c-5p levels (T2DM + Comp HDL: 136 ± 7% vs PBS: 100 ± 9%, p < 0.05). Conclusions/interpretation: In conclusion, HDL from Aboriginal people with diabetic complications had reduced angiogenic capacity. This impairment is associated with an increase in the expression of anti-angiogenic miR-181c-5p. These findings provide the rationale for a new way to better inform clinical diagnosis of disease severity with the potential to incorporate targeted, personalised HDL-miRNA intervention therapies to prevent further development of, or to reverse, diabetic vascular complications in Australian Aboriginal people.Kaitlin R. Morrison, Emma L. Solly ... Peter J. Psaltis, Stephen J. Nicholls, Alex Brown, Christina A. Bursill ... et al

    Fenofibrate rescues diabetes-related impairment of ischemia-mediated angiogenesis by PPARα-independent modulation of thioredoxin-interacting protein

    No full text
    Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, reduces lower limb amputations in patients with type 2 diabetes. The mechanism is, however, unknown. In this study, we demonstrate that fenofibrate markedly attenuates diabetes-related impairment of ischemia-mediated angiogenesis. In a murine model of hindlimb ischemia, daily oral fenofibrate treatment restored diabetes-impaired blood flow recovery, foot movement, hindlimb capillary density, vessel diameter, and vascular endothelial growth factor signaling to nondiabetic levels in both wild-type and PPARα-knockout mice, indicating that these fenofibrate effects are largely PPARα independent. In vitro, fenofibric acid (FFA) rescued high glucose-induced (25 mmol/L) impairment of endothelial cell migration, tubulogenesis, and survival in a PPARα-independent manner. Interestingly, fenofibrate in vivo and FFA in vitro reversed high glucose-induced expression of thioredoxin-interacting protein (TXNIP), an exquisitely glucose-inducible gene previously identified as a critical mediator of diabetes-related impairment in neovascularization. Conversely, adenoviral overexpression of TXNIP abrogated the restorative effects of FFA on high glucose-impaired endothelial cell function in vitro, indicating that the effects of FFA are mediated by TXNIP. We conclude that fenofibrate rescues diabetic impairment in ischemia-mediated angiogenesis, in large part, by PPARα-independent regulation of TXNIP. These findings may therefore explain the reduction in amputations seen in patients with diabetes treated with fenofibrate.Jun Yuan, Joanne T.M. Tan, Kushwin Rajamani, Emma L. Solly, Emily J. King, Laura Lecce, Philippa J.L. Simpson, Yuen Ting Lam, Alicia J. Jenkins, Christina A. Bursill, Anthony C. Keech and Martin K.C. N

    The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis

    Get PDF
    Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.Samuel T. Hourigan, Emma L. Solly, Victoria A. Nankivell, Anisyah Ridiandries, Benjamin M. Weimann, Rodney Henriquez, Edward R. Tepper, Jennifer Q. J. Zhang, Tania Tsatralis, Zoe E. Clayton, Laura Z. Vanags, Stacy Robertson, Stephen J. Nicholls, Martin K. C. Ng, Christina A. Bursill, Joanne T. M. Ta

    VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia

    No full text
    High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.Carla M. Cannizzo, Aaron A. Adonopulos, Emma L. Solly, Anisyah Ridiandries, Laura Z. Vanags, Jocelyne Mulangala, Sui Ching G. Yuen, Tania Tsatralis, Rodney Henriquez, Stacy Robertson, Stephen J. Nicholls, Belinda A. Di Bartolo, Martin K.C. Ng, Yuen Ting Lam, Christina A. Bursill, and Joanne T.M. Ta

    The Development of Gene Therapy: From Monogenic Recessive Disorders to Complex Diseases Such as Cancer

    No full text
    corecore