900 research outputs found

    Metabolite-mediated catalyst conversion of PFK and PFP

    Get PDF
    Metabolites known to occur in the cytosol of photosynthetic leaf cells were found to mediate the reversible conversion of pyrophosphate—D-fructose-6-phosphate 1-phosphotransferase (PFP) to phosphofructokinase (PFK) in partially purified preparations from spinach leaves. Preincubation of PFP with fructose 2,6-bisphosphate, ATP or fructose 6-phosphate converted PFP to PFK. The reverse reaction (PFK → PFP) was promoted by UDP-glucose plus pyrophosphate. These conversions in catalytic capability were accompanied by changes in molecular mass and charge. The results are in accord with the view that the alterations in PFP and PFK activity, provisionally called ‘metabolite-mediated catalyst conversion’, represent a regulatory mechanism to direct left cytosolic carbon flux in either the biosynthetic or degradatory direction

    A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts

    Get PDF
    A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP

    Enhancing market-oriented R&D planning by integrated market and patent portfolios

    Full text link
    Marketing and R&D strategies need to be aligned to increase the return from investment in new technologies. Various portfolio techniques have been widely used to support strategic planning. A new portfolio approach integrating market and technology portfolios to support market-oriented R&D planning is developed. The integrated portfolio is based on objective market and patent data and empirical evidence that the respective portfolio dimensions impact a company’s business performance. This contributes significantly to the relevance of the proposed integrated portfolio approach for strategic planning. It is tested in a practical application in the chemical industry. Based on these experiences, a set of recommendations for the effective use of the integrated portfolio for market-orientated strategic R&D planning is derived

    The formation of homogentisate in the biosynthesis of tocopherol and plastoquinone in spinach chloroplasts

    Get PDF
    Homogentisate is the precursor in the biosynthesis of -tocopherol and plastoquinone-9 in chloroplasts. It is formed of 4-hydroxyphenylpyruvate of the shikimate pathway by the 4-hydroxyphenylpyruvate dioxygenase. In experiments with spinach the dioxygenase was shown to be localized predominatedly in the chloroplasts. Envelope membranes exhibit the highest specific activity, however, because of the high stromal portion of chloroplasts, 60–80% of the total activity is housed in the stroma. The incorporation of 4-hydroxyphenylpyruvate into 2-methyl-6-phytylquinol as the first intermediate in the tocopherol synthesis by the two-step-reaction: 4-Hydroxyphenylpyruvate Homogentisate 2-Methyl-6-phytylquinol was demonstrated by using envelope membranes. Homogentisate originates directly from 4-hydroxyphenylpyruvate of the shikimate pathway. Additionally, a bypass exists in chloroplasts which forms 4-hydroxyphenylpyruvate from tyrosine by an L-amino-acid oxidase of the thylakoids and in peroxisomes by a transaminase reaction. Former results about the dioxygenase in peroxisomes were verified

    A New Approach to Molecular Configuration Applied to Aqueous Pore Transport

    Full text link
    • …
    corecore