Cellular Regulation by Protein Phosphorylation

Edited by

Ludwig M.G. Heilmeyer, Jr.

Universität Bochum Medizinische Fakultät Institut für Physiologische Chemie Universitätsstr. 150 W-4630 Bochum, FRG

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Published in cooperation with NATO Scientific Affairs Division

CONTENTS

I. BACKGROUND AND GENERAL INTRODUCTION	
Signal Integration in Phosphorylase Kinase L. M. G. Heilmeyer, Jr.	3
Physical Approaches to Conformation and Assembly of Biological Macromolecules M. H. J. Koch	17
A Vibrational Raman Spectroscopic Study of Myosin and Myosin-Vanadate Interactions J. J. C. Teixeira-Dias, E. M. V. Pires, P. J. A. Ribeiro-Claro, L. A. E. Batista de Carvalho, M. Aureliano and A. M. Amado	29
Phosphorylation and the Frequency Encoding of Signal-induced Calcium Oscillations A. Goldbeter and G. Dupont	35
II. METHODOLOGY	
Determination of Phosphorylated Amino Acids in Protein Sequences H. E. Meyer, E. Hoffmann-Posorske, H. Korte, T. R. Covey and A. Donella-Deana	43
Back-Phosphorylation - a Sensitive Technique to Study Protein Phosphorylation in the Intact Heart P. Karczewski	51
Thermal Transitions in Cardiac Troponin and Its Subunits L. A. Morozova, V. L. Shnyrov, N. B. Gusev and E. A. Permyakov	67
Dynamic Phosphorylation of a Small Chloroplast Protein Exhibiting So Far Undescribed Labelling Properties J. Soll, A. Steidl and I. Schröder	73

 Identification of Phosphorylation Sites in the Nicotinic Acetylcholine Receptor by Edman Degradation and Mass Spectroscopy LC/MS and LC/MS/MS W. Schröder, H. E. Meyer, T. Covey, K. Buchner, K. Eckart and F. Hucho 			
A Sensitive Colorimetric Assay for Protein Phosphatase Activity T. P. Geladopoulos, T. G. Sotiroudis and A. E. Evangelopoulos	85		
III. STRUCTURE - FUNCTION RELATIONSHIP			
Protein Kinase Structure and Function: cAMP-Dependent Protein Kinase S. S. Taylor, W. Yonemoto, W. R. G. Dostmann, D. L. Knighton, J. M. Sowadski, F. W. Herberg, J. A. Buechler and Y. Ji-Buechler	91		
Expression in E. Coli of Mutated R Subunits of the cAMP- Dependent Protein Kinase From Dictyostelium Discoideum MN. Simon, S. Gazeau, O. Pellegrini and M. Veron	107		
Expression of the -Subunit of Phosphorylase b Kinase in E. Coli S. Cox and L. N. Johnson	113		
Conformational and Shape Changes Associated with cAMP-Dependent Protein Kinase F. W. Herberg and S. S. Taylor	119		
Crystallographic Studies of the Catalytic Subunit of cAMP-Dependent Protein Kinase D. R. Knighton, J. Zheng, V. A. Ashford, S. S. Taylor, NH. Xuong and J. M. Sowadski	125		
 6-Phosphofructo 2-Kinase/Fructose 2,6-Bisphosphatase: Kinetic Changes Induced by Phosphorylation F. Ventura, J. L. Rosa, S. Ambrosio, J. Gil, A. Tauler and R. Bartrons 	131		

Enzymes Involved in the Reversible Phosphorylation in Microvessels of the Brain U. Dechert, M. Weber-Schaueffelen, S. Lang-Heinrich and E. Wollny	137
Covalent Modification of Creatine Kinase by ATP; Evidence for Autophosphorylation W. Hemmer, S. J. Glaser, G. R. Hartmann, H. M. Eppenberger and T. Wallimann	143
Two Adjacent Phosphoserines in Bovine, Rabbit and Human Cardiac Troponin I K. Mittmann, K. Jaquet and L. M. G. Heilmeyer, Jr.	149
Characterisation of Thylakoid Membrane Protein Kinase by Affinity and Immunological Methods I. R. White, M. Hodges and P. A. Millner	159
IV. CA ²⁺ AND CYCLIC NUCLEOTIDE-INDEPENDENT PHOSPHORYLATION	
A Diversity of Elements in the Protein Kinase C Signal Transduction Pathway P. J. Parker	167
"Independent" Protein Kinases: A Challenge to Canons L. A. Pinna	179
Biphasic Activation of the S6 Kinase: Identification of Signalling Pathways G. Thomas	195
Changes on the Electrophoretic Mobility of CD5 Molecules Induced by PKC-mediated Phosphorylation J. Alberola-Ila, L. Places, J. Vives and F. Lozano	209
Opposing Effects of Protein Kinase C in IgE-dependent Exocytosis and InsP ₃ Formation G. Gat-Yablonski and R. Sagi-Eisenberg	215
Proteinphosphorylation in Platelets-Evidence for Increased Protein Kinase C Activity in Essential Hypertension C. Lindschau, H. Haller, P. Quass and A. Distler	221

Protein Phosphorylation in Luteal Membrane Fraction L. T. Budnik and A. K. Mukhopadhyay	227
Purification of Bovine Brain Protein Kinase C Employing Metal Ion Dependent Properties C. Block and D. Beyersmann	233
Cardiac Protein Kinase C Isoenzymes: Phosphorylation of Phospholamban in Longitudinal and Junctional Sarcoplasmic Reticulum B. G. Allen and S. Katz	239
Characterization of the Phosphorylation Sites of 40S Ribosomal Protein S6 H. R. Bandi, S. Ferrari, H. E. Meyer and G. Thomas	245
V. CYCLIC NUCLEOTIDE-DEPENDENT SIGNALLING	
G Protein Oncogenes H. R. Bourne	253
A New Role for β -Subunits of G-Proteins E. J. M. Helmreich	261
Conditions Favouring Phosphorylation Inhibit the Activation of Adenylate Cyclase in Human Platelet Membranes I. A. Wadman, R. W. Farndale and B. R. Martin	271
VI. PROTEIN TYROSINE PHOSPHORYLATION	
Regulation of Tyrosine Kinases by Tyrosine Phosphorylation J. A. Cooper, A. MacAuley and A. Kazlauskas	279
pp75: A Novel Tyrosine Phosphorylated Protein That Heralds Differentiation of HL-60 Cells I. Bushkin, J. Roth, D. Heffetz and Y. Zick	289
Preliminary Biochemical Studies of a Drosophila Homolog of p60 ^{C-src} S. J. Kussick and J. A. Cooper	295

Phosphoinositide Kinases and EGF Receptor Activation in Plasma Membranes of Tyrosine from A431 Cells B. Payrastre, M. Plantavid, M. Breton, E. Chambaz and H. Chap	301
Phosphorylation of Synaptophysin by the <u>c-src</u> Encoded Protein Tyrosine Kinase pp60 ^{C-src} A. Barnekow	307
Altered Thymocyte Development Induced by Augmented Expression of p56 ^{lck} K. M. Abraham, S. D. Levin, J. D. Marth, K. A. Forbush and R. M. Perlmutter	313
VII. PROTEIN PHOSPHATASES	
Regulation and Regulatory Role of the Inactive ATP, Mg-dependent Protein Phosphatase (pp-11) J. R. Vandenheede, P. Agostinis and J. Van Lint	321
Okadaic Acid from Laboratory Cultures of a Dinoflagellate Alga: Effects on Protein Phosphorylation in C3H10T1/2 Fibroblasts H. Angel Manjarrez Hernandez, L. A. Sellers and A. Aitken	331
Regulation of Proto-oncogene Expression and Rate of Protein Synthesis by the Tumor Promoter Okadaic Acid A. Schönthal	337
The Use of β Cyclodextrin in the Purification of Protein Phosphatase G from Rat Liver S. Wera, M. Bollen and W. Stalmans	343
Characterization of a Human T-cell Protein Tyrosine Phosphatase Expressed in the Baculovirus System N. F. Zander, J. A. Lorenzen, G. Daum, D. E. Cool and E. H. Fischer	349
Inhibition of Tyrosine Protein Phosphatases from Muscle and Spleen by Nucleic Acids and Polyanions C. Stader, S. Dierig, N. Tidow, S. Kirsch and H. W. Hofer	355

VIII. CONTROL OF CELLULAR PROCESSES

Biochemical Regulation of the CDC2 Protein Kinase G. Draetta	363
Molecular and Biochemical Characterization of the Mitogen- activated S6 Kinase G. Thomas	375
Protein Phosphorylation in the Nervous System M. W. Kilimann	389
Mitotic Control in Mammalian Cells, Positive and Negative Regulation by Protein Phosphorylation A. Fernandez and N. Lamb	397
Regulation of Eukaryotic Translation by Protein Phosphorylation H. Trachsel	411
Regulation of Microfilament Assembly B. Schoepper, C. Weigt and A. Wegner	421
<pre>Stimulation of Human DNA Topoisomerase I by Protein Kinase C J. Alsner, E. Kjeldsen, J. Q. Svejstrup, K. Christiansen and O. Westergaard</pre>	429
Protein Phosphorylation in Partially Synchronized Cell Suspension Culture of Alfalfa L. Bakó, L. Bögre and D. Dudits	435
Phosphorylation of Elongation Factor Tu in vitro and in vivo C. Lippmann, C. Lindschau, K. Buchner and V. A. Erdmann	441
About a Controversy Concerning the Existence of a Mitogen- responsive S6-Kinase (Late-eluting from DEAE-Sephacel) O. H. W. Martini, A. Lawen and M. Burger	447
Expression of Ferritin Messenger RNA in an in vitro Model of Human CD3-mediated T-Lymphocyte Activation L. de Oliveira and M. de Sousa	453

Relaxation of Smooth Muscle at High Levels of Myosin Light Chain (MLC) Phosphorylation G. Pfitzer and S. Katoch	459
Evidence for Site- and Domain-specific Phosphorylation of the 145 kDa Neurofilament Subunit in vivo R. K. Sihag and R. A. Nixon	465
Tumor Necrosis Factor-induced Gene Expression and Cytotoxicity Share a Signal Transduction Pathway G. Haegeman, V. Vandevoorde and W. Fiers	471
Protein Phosphorylation Is Involved in the Recognition of Pathogen-derived Signals by Plant Cells D. G. Grosskopf, G. Felix and Th. Boller	477
Effect of Membrane Modifiers on Polyphosphoinositide Synthesis in Rat Heart Sarcolemma N. Mesaeli and V. Panagia	483
Phosphorylation and Acylation of the Growth-related Murine Small Stress Protein P25 S. Oesterreich, R. Benndorf, G. Reichmann and H. Bielka	489

INDEX

DYNAMIC PHOSPHORYLATION OF A SMALL CHLOROPLAST PROTEIN EXHIBITING SO FAR UNDESCRIBED LABELLING PROPERTIES

J. Soll, A. Steidl, I. Schröder Fachrichtung Botanik der Universität des Saarlandes D-6600 Saarbrücken

A 19 kDa phosphoprotein from mixed envelope membranes of spinach chloroplasts with extreme labelling kinetics has been characterized. Its localization between the inner and the outer envelope membrane can be deduced by the differential labelling between intact and broken chloroplasts (Table 1), (Soll and Bennett 1988, Soll et al. 1989).

Table 1 Differential labelling of proteins from intact and lysed chloroplasts. Phosphorylation was done at 10 nM ATP at 4 °C for 30 sec. Values are expressed in dpm μ g chlorophyll⁻¹ x min⁻¹

	intact chloroplasts	lysed chloroplasts	ratio
thylakoid/LHCP	53	125	0 424
stroma a	12	110	0.109
stroma b outer envelope	11	100	0.11
(86 kDa) intermembrane space	63	16	3.9
(64 kDa)	98	54	1.8
19 kDa protein	2340	375	6.24

If the 19 kDa protein is indeed localized in the envelope lumen, intact and broken chloroplasts should differ in their labelling kinetics. Intact chloroplasts still contain residual, endogenous ATP, this means that during labelling of intact chloroplasts two ATP pools exist, with different specific activity which is encountered by envelope membrane proteins and another with low specific activity which is encountered by proteins inside the chloroplast. In intact chloroplasts the outer envelope 86 kDa protein, the 64 kDa and the 19 kDa protein were labelled much earlier and stronger than the stromal and thylakoid phosphoproteins.

The function of the interenvelope space is unknown; the dynamically phosphorylated 19 kDa protein has been purified from mixed envelope membranes (Table 2) and characterized. It seems reasonable that it participates in a signal transduction process. The first purification step was a mild sonication followed by anion exchange chromatography on DEAE cellulose of the supernatant (Table 2). Most of the protein eluted at 125 mM NaCl. Active protein fractions were pooled and purified further on a hydroxylapatite column from which it could be eluted at 60 mM phosphate buffer pH 7.6.

Step	Volume ml	Protein µg	Total units	Specific activity units/mg	Reco- very %	Purifi- cation fold
Envelope membranes	1	6950	63.2	9.1	100	1
Sonication supernatant	0.89	1510	55	36.4	87	4.6
DEAE chromato- graphy	5.6	8.9	28.5	3200	45	352
Hydroxyl- apatite	4.5	0.54	4.4	8161	7	897

Table 2 Purification of spinach envelope 19 kDa protein

1 unit equals 1 fmol $^{32}{\rm p}$ incorporated into the 19 kDa protein from $[\gamma^{-32}{\rm P}]-{\rm ATP}~{\rm x}~{\rm min}^{-1}$

The 19 kDa protein shows an extreme affinity for ATP and GTP as demonstrated by the low K_m values of 8 nM and 5 nM for ATP and GTP respectively (Fig. 1 A). The phosphorylation, that is trichloracetic acid or acetone precipitable, is dependent on the presence of divalent cations (Mg²⁺ and Mn²⁺) (Fig. 1 B).

The cation Ca^{2+} has no effect. ADP and GDP inhibit phosphorylation (Fig. 1 D). The optimal pH for phosphorylation is in the range between pH 7 and pH 9 (Fig. 1 C). The pI of the phosphorylated enzyme has the value 6.2, whereas the pI of the non phosphorylated enzyme is 6.3.

Fig. 1) Characterization of the phosphorylation reaction of the partially purified 19 kDa protein. A) Determination of the Km value for ATP. B) Influence of divalent cations. C) pH dependence. D) The phosphorylation is inhibited by ADP.

The molecular weight of the phosphorylated protein was estimated by SDS gel electrophoresis and found to be 18.8 kDa (Fig. 2 A). The phosphoryl turnover is extremely rapid, as deduced from a pulse-chase experiment. If the protein was labelled in the presence of 8 nM $[\gamma^{-32}P]$ -ATP for 60 sec and 10 μ M cold ATP was added at this time point, 90 % of the labelled phosphorylgroups in the protein are turned over within 15 sec.

The determination of the phosphorylated amino acid residue demonstrated that no hydroxylated amino acid was phosphorylated, firstly the phosphate bond was labile to acidic conditions; secondly after acid hydrolysis of the protein and high voltage electrophoresis no radioactivity was detectable in P-Ser, P-Thr or P-Tyr (Soll et al. 1989). Extraction of the phosphorylated protein by chloroform methanol at pH 1 resulted in no detectable label in the organic solvent phase, but the total radioactivity was still bound to the protein. Exposure of the phosphoprotein to hydroxylamine or pyridine buffered in acetate showed a concentration dependent base catalyzed enhancement of the hydrolysis rate (Fig. 2 B) and excluded most likely aspartate and glutamate as phosphorylgroup acceptor, as those are not susceptible to pyridine treatment (Sabato and The label was also labile at Jencks 1961,Hokin et al. 1965). alkaline pH (Stelte and Witzel 1986). At the moment it seems most likely that we deal with a lysine or histidine phosphate. The phosphorylation of the 19 kDa protein is inhibited by TNP-ATP and by erythrosin (Fig. 2 C,D).

Fig. 2) A. Determination of the molecular weight of the phosphorylated form of the purified 19 kDa protein by SDS-PAGE B. Time course of hydrolysis of the phosphate bond in 1 M acetate buffer pH 5.5 in the presence of 0.1 M hydroxylamin or pyridin. C. Inhibition of the 32 P-incorporation by TNP-ATP. D. Inhibition of 19 kDa protein phosphorylation by erythrosine

The purified 19 kDa protein did not show significant ATPase activity (not shown). These findings are corroborated by results (Table 3), which demonstrate the effect of various ATPase inhibitors on the phosphorylation of the 19 kDa protein (Sze et al. 1987, Serrano 1988, Sze and Randall 1987). From further experiments it seems likely that ³²p-incorporation into the 19 kDa protein is due to autophosphorylation.

Table 3

Inhibition of 19 kDa protein phosphorylation by various substrates. The purified protein was phosphorylated by $[\gamma^{-3^2}P]^-$ ATP in the presence of different effectors. A minimum of five different effector concentrations was used in every case.

effector	max.concentration	<u>% inhibition</u>
NaNa	10 m M	0
NaF	20 mM	0
NaF/AlCl ₃	10 mM/50 µM	0
ortho vañadate	0.5 mM	29
molybdate	2.0 mM	0
nitrate	10 mM	0
oligomycin	0.5 mM	0
DCCD ¹)	0.5 mM	0
ouabain	125 µM	0
dihydroxyacetonephohate	2 mM	60
NaCl	150 mM	50

1) The purified protein was preincubated with DCCD for to 2h.

Acknowledgements: This study was supported by the DFG (SFB 184).

Literature
Hokin, L.E., Sastry, P.S., Galsworthy, P.R. & Yoda, A.
 (1965)Proc.Natl.Acad.Sci. USA <u>54</u>, 177-184.
Sabato, G.D. & Jencks, W.P. (1961) J.Am.Chem.Soc. <u>83</u>,
 4393-4400.
Serrano, R. (1988) Biochim.Biophys. Acta <u>947</u>, 1-28.
Soll, J. & Bennett, J. (1988) Eur.J.Biochem. <u>175</u>, 301-307.
Soll, J., Berger, V. & Bennett, H.J. (1989) Planta (Berl.)
 <u>177</u>, 393-400.
Stelte, B. & Witzel, H. (1986) Eur.J.Biochem. <u>155</u>, 121-124.
Sze, H., Randall, S.K., Kaestner, K.H. & Lai, S. (1987) in
 Plant Membranes: Structure, Function Biogenesis,
 pp. 195-207, eds.C.Leaver & H. Sze, Alan Liss Inc.
Sze, H. & Randall, S.K. (1987) J.Biol.Chem. <u>262</u>, 7135-7141.