81 research outputs found

    Les fondations pieuses de la noblesse auvergnate à la Renaissance. Entre exaltation du pouvoir seigneurial et charge financière pour les vivants

    Get PDF
    Loin de marquer une rupture, la mort contribuait à rapprocher les vivants et les morts comme le montrent les fondations pieuses. Quelques exemples au sein de la noblesse auvergnate permettent d’approcher la question des consommations funéraires et de leur transcription en termes de gains pour les parents vivants. Nécessaire à l’affirmation d’une identité nobiliaire forgée autour de la légitimation de la seigneurie, le coût des fondations pieuses affectait les revenus de ceux qui étaient tenus de les honorer. Peut-on alors parler d’un paradoxe des fondations pieuses ? Si elles jouaient à plein dans la constitution d’un héritage immatériel, en orchestrant une partie des manifestations cérémonielles du pouvoir seigneurial, elles pouvaient aussi être perçues comme l’une des causes de l’incapacité de certaines familles à maintenir matériellement leur rang.As the pious foundations show, rather than marking a separation, death helped bring the living and the dead closer together. In this paper, the question of funerary consumption is approached using examples from the Auvergne nobility. The pious foundations not only reflected a household’s power over a territory, but also the relationship between its members. Burial, graves and pious foundations formed a trilogy which demonstrated membership in the nobility, and were necessary in asserting a nobiliary identity forged on the legitimation of the seigniory. However, many noblemen complained that the pious foundations of their forebears impoverished them. Might we then talk of a pious foundation paradox? While their role in building an immaterial legacy through the ceremonial expression of seigniorial power is undeniable, they also rendered certain families financially incapable of maintaining their rank

    VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The machinery of early HIV-1 replication still remains to be elucidated. Recently the viral core was reported to persist in the infected cell cytoplasm as an assembled particle, giving rise to the reverse transcription complex responsible for the synthesis of proviral DNA and its transport to the nucleus. Numerous studies have demonstrated that reverse transcription of the HIV-1 genome into proviral DNA is tightly dependent upon proper assembly of the capsid (CA) protein into mature cores that display appropriate stability. The functional impact of structural properties of the core in early replicative steps has yet to be determined.</p> <p>Results</p> <p>Here, we show that infectivity of HIV-1 mutants bearing S<sub>149</sub>A and S<sub>178</sub>A mutations in CA can be efficiently restored when pseudotyped with vesicular stomatitis virus envelope glycoprotein, that addresses the mutant cores through the endocytic pathway rather than by fusion at the plasma membrane. The mechanisms by which these mutations disrupt virus infectivity were investigated. S<sub>149</sub>A and S<sub>178</sub>A mutants were unable to complete reverse transcription and/or produce 2-LTR DNA. Morphological analysis of viral particles and <it>in vitro </it>uncoating assays of isolated cores demonstrated that infectivity defects resulted from disruption of the viral core assembly and stability for S<sub>149</sub>A and S<sub>178</sub>A mutants, respectively. Consistent with these results, both mutants failed to saturate TRIM-antiviral restriction activity.</p> <p>Conclusion</p> <p>Defects generated at the level of core assembly and stability by S<sub>149</sub>A and S<sub>178</sub>A mutations are sensitive to the way of delivery of viral nucleoprotein complexes into the target cell. Addressing CA mutants through the endocytic pathway may compensate for defects generated at the reverse transcription/nuclear import level subsequent to impairment of core assembly or stability.</p

    Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay

    Get PDF
    We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents

    Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    Get PDF
    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms

    An alternative pathway for alphavirus entry

    Get PDF
    The study of alphavirus entry has been complicated by an inability to clearly identify a receptor and by experiments which only tangentially and indirectly examine the process, producing results that are difficult to interpret. The mechanism of entry has been widely accepted to be by endocytosis followed by acidification of the endosome resulting in virus membrane-endosome membrane fusion. This mechanism has come under scrutiny as better purification protocols and improved methods of analysis have been brought to the study. Results have been obtained that suggest alphaviruses infect cells directly at the plasma membrane without the involvement of endocytosis, exposure to acid pH, or membrane fusion. In this review we compare the data which support the two models and make the case for an alternative pathway of entry by alphaviruses

    Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia

    Get PDF
    At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs

    Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization

    Get PDF
    A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI: http://dx.doi.org/10.7554/eLife.00435.00

    Les généalogies imaginaires des Marillac ou comment faire des siens des gentilshommes de noblesse immémoriale

    No full text
    corecore