25 research outputs found

    Recent advances in natural polymer-based hydroxyapatite scaffolds:Properties and applications

    Get PDF
    New materials that mimic natural bone properties, matching functional, mechanical, and biological properties have been continuously developed to rehabilitate bone defects. Desirably, 'tissue engineering' has been a multidisciplinary ground that uses the principles of life sciences and engineering for the biological replacements that restore or replace the tissue function or a whole organ. Nevertheless, the bone grafting treatment has numerous restrictions, counting the major hazards of morbidity from the sites where donor bone grafts are removed, the likelihood for an immune rejection or bacterial transport from the donor site (in case of allogeneic grafting), and the inadequate availability of donor bone grafts that can meet the current demands. Since the proper growth of synthetic materials for implantable bones encourages the reconstruction of bone tissues by providing strong structural support without any damages to the interferences of biological tissue. To serve for such behavior, the biodegradable matrices provide temporary scaffolds within which the bone tissues can be regenerated. Typically, the thermoplastic aliphatic polyesters are found to serve this purpose. The great significance of this field lies in the in vitro growth of precise cells on porous matrices (scaffolds) to generate three-dimensional (3D) tissues that can be entrenched into the location of tissue/bone damage. Numerous gifts have been gifted by our nature to advance and preserve the well-being of all living things either directly or indirectly. This review focuses on the recent advances in polymer-based hydroxyapatite scaffolds including their properties and applications

    Supramolecular Interactions Involved in the Solid State Structure of N,N\u27-[bis(pyridin-2-yl)formylidene]ethane-1,2-diamine

    Get PDF
    The structure of the symmetrical Schiff base, N,N\u27-[bis(pyridin-2-yl)formylidene]ethane-1,2-diamine (bpfd) has been characterized by single crystal X-ray diffraction. The non-covalent supramolecular chemistry involved in the crystal structure of this ligand has been carefully investigated. The structure adopted different motifs of nitrogen-hydrogen interactions that led to the formation of centrosymmetric dimers. In addition, edge-edge and face-face nitrogen-nitrogen interactions were ob-served and reported. The Schiff base (bpfd) ligand crystallizes in a monoclinic space group C12/c1 with a = 19.128(2) Å; b = 5.8776(6) Å; c = 13.1403(15) Å; α = 90o; β = 121.970o(4); γ = 90o and z = 4. This structure is an example of compounds with many symmetry-independent molecules in the asymmetric unit cell (Z > 2)

    Functionalized graphene-based nanocomposites for smart optoelectronic applications

    Get PDF
    The recent increase in the use of graphene and its derivatives is due to their exceptional physicochemical, electrical, mechanical, and thermal properties as the industrial materials developed by involving graphene structures can fulfill future needs. In that view, the potential use of these graphene-containing nanomaterials in electronics applications has encouraged in-depth exploration of the electronic, conducting, and other functional properties. The protecting undifferentiated form of graphene has similarly been proposed for various applications, for example, as supercapacitors, photovoltaic and transparent conductors, touch screen points, optical limiters, optical frequency converters, and terahertz devices. The hybrid composite nanomaterials that undergo stimulus-induced optical and electrical changes are important for many new technologies based on switchable devices. As a two-dimensional smart electronic material, graphene has received widespread attention, and with that view, we aim to cover the various types of graphene oxide (GO)-based composites, linking their optical and electrical properties with their structural and morphological ones. We believe that the topics covered in this review can shed light on the development of high-yield GO-containing electronic materials, which can be fabricated as the field moves forward and makes more significant advances in smart optoelectronic devices

    Enhanced gas sensing and photocatalytic activity of reduced graphene oxide loaded TiO2 nanoparticles

    Get PDF
    In the present study, we have evaluated the gas sensing and photocatalytic activity of reduced graphene oxide (rGO) conjugated titanium dioxide (TiO2) nanoparticles (NPs) formed by the hydrothermal method. The as-synthesized rGO-TiO2 nanocomposite were characterized for the physicochemical properties such as the nature of crystallinity, functionalization, and morphology by making use of the powder X-ray diffraction, Fourier transform-infrared spectroscopy, and scanning electron microscopy, respectively. On testing the gas sensing properties, we found that the rGO-TiO2 nanocomposite can serve as the chemoresistive-type sensor because of its sensitivity and selectivity towards different concentrations of hydrogen and oxygen at room temperature conditions. However, the rGO-TiO2 sensor’s response and recovery speed towards hydrogen and oxygen needs further optimization. Test of photocatalytic activity of TiO2-rGO catalyst for the removal of two model contaminant dyes, RhB and MB showed effective removal, with respective degradation percentages of about 80 and 90% within the first 50 min of irradiation under visible light irradiation. Besides, MB was more effectively degraded using TiO2-rGO than pure TiO2 during the first 30 min of irradiation and this enhanced activity can be attributed to the increased capacity of light absorption, the efficiency of charge carriers separation, and the specific surface area maintained by the rGO-TiO2 nanocomposite to effectively utilize the photo-generated holes (h+) and superoxide radicals (O2−radical dot), responsible for the degradation of the dye. Based on the overall analysis, the formation of rGO-TiO2 nanocomposite can significantly improve the gas sensing and photocatalytic properties of TiO2 NPs and thus can be potential for practical applications in future nanotechnology

    Effect of pillared clays on the hydroisomerization of n-heptane

    No full text
    Different montmorillonites and saponites were pillared with Al polyoxocations to obtain catalytic supports for the hydroisomerization of n-heptane. The catalysts were characterized by different techniques such as X-ray diffraction, elemental analysis and N2 adsoprtion. The temperature-programmed desorption of ammonia indicated that pillared clays exhibited moderate and strong acid sites. The concentration of the acid sites depended on the starting clays as well as the type of the clays. The pillared saponites are more effective for the hydroisomerization of n-heptane at 300 °C, however, it decreased over the Al-pillared montmorillonites, and mainly cracking products were obtained

    Synthesis and structure of new organic inclusion compounds

    Full text link

    Effect of the acid activation levels of montmorillonite clay on the cetyltrimethylammonium cations adsorption

    No full text
    For the first time, the intercalation properties of acid-activated montmorillonites treated at different acid/clay (w/w) ratios with a cationic surfactant cetyltrimethylammonium (C16TMA) hydroxide are reported. The acid activation causes a reduction in the number of cation exchange sides and, hence improves the exfoliation of the silicate sheets at higher pH values. The basal spacing increases significantly from 1.54 to 3.80 nm, and is related to the acid activation extent. The acid activated clays with acid/clay ratios above 0.2 intercalated significant amounts of C16TMA cations with a basal spacing of 3.8 nm compared to the non acid activated montmorillonite with a basal spacing of 2.10 nm. The 13C CP/MAS NMR indicates that the intercalated surfactants exhibit a significant degree of gauche conformation in the acid-activated clays. According to in-situ powder XRD, an increase of the basal spacing to 4.08 nm is observed at intermediate temperatures of 50-150°C for organoclay with basal spacing of 3.80 nm, at higher temperatures above 300°C, the decomposition of the surfactant occurs and the basal spacing decreases to a value of about 1.4 nm, with the persistence of a reflection at 3.8 nm for clay at a higher acid/clay ratio of 0.5
    corecore