6,213 research outputs found

    A new route towards uniformly functionalized single-layer graphene

    Get PDF
    It is shown, by DFT calculations, that the uniform functionalization of upper layer of graphite by hydrogen or fluorine does not change essentially its bonding energy with the underlying layers, whereas the functionalization by phenyl groups decreases the bonding energy by a factor of approximately ten. This means that the functionalized monolayer in the latter case can be easily separated by mild sonication. According to our computational results, such layers can be cleaned up to pure graphene, as well as functionalized further up to 25% coverage, without essential difficulties. The energy gap within the interval from 0.5 to 3 eV can be obtained by such one-side funtionalization using different chemical species.Comment: 15 pages, 3 figures, to appear in J. Phys. D: Applied Physic

    Modelling of epitaxial graphene functionalization

    Full text link
    A new model for graphene, epitaxially grown on silicon carbide is proposed. Density functional theory modelling of epitaxial graphene functionalization by hydrogen, fluorine and phenyl groups has been performed with hydrogen and fluorine showing a high probability of cluster formation in high adatom concentration. It has also been shown that the clusterization of fluorine adatoms provides midgap states in formation due to significant flat distortion of graphene. The functionalization of epitaxial graphene using larger species (methyl and phenyl groups) renders cluster formation impossible, due to the steric effect and results in uniform coverage with the energy gap opening.Comment: 15 pages, 4 figures, to appear in Nanotechnolog

    Determination of the magnetic anisotropy axes of single-molecule magnets

    Full text link
    Simple methods are presented allowing the determination of the magnetic anisotropy axes of a crystal of a single-molecule magnet (SMM). These methods are used to determine an upper bound of the easy axis tilts in a standard Mn12-Ac crystal. The values obtained in the present study are significately smaller than those reported in recent high frequency electron paramagnetic resonance (HF-EPR) studies which suggest distributions of hard-axes tilts.Comment: 10 pages, 6 figure

    The nature of the low energy band of the Fenna-Matthews-Olson complex: vibronic signatures

    Full text link
    Based entirely upon actual experimental observations on electron-phonon coupling, we develop a theoretical framework to show that the lowest energy band of the Fenna- Matthews-Olson (FMO) complex exhibits observable features due to the quantum nature of the vibrational manifolds present in its chromophores. The study of linear spectra provides us with the basis to understand the dynamical features arising from the vibronic structure in non-linear spectra in a progressive fashion, starting from a microscopic model to finally performing an inhomogenous average. We show that the discreteness of the vibronic structure can be witnessed by probing the diagonal peaks of the non-linear spectra by means of a relative phase shift in the waiting time resolved signal. Moreover, we demonstrate the photon-echo and non-rephasing paths are sensitive to different harmonics in the vibrational manifold when static disorder is taken into account. Supported by analytical and numerical calculations, we show that nondiagonal resonances in the 2D spectra in the waiting time, further capture the discreteness of vibrations through a modulation of the amplitude without any effect in the signal intrinsic frequency. This fact generates a signal that is highly sensitive to correlations in the static disorder of the excitonic energy albeit protected against dephasing due to inhomogeneities of the vibrational ensemble.Comment: 14 pages, 6 figure

    Toward detailed prominence seismology - I. Computing accurate 2.5D magnetohydrodynamic equilibria

    Full text link
    Context. Prominence seismology exploits our knowledge of the linear eigenoscillations for representative magnetohydro- dynamic models of filaments. To date, highly idealized models for prominences have been used, especially with respect to the overall magnetic configurations. Aims. We initiate a more systematic survey of filament wave modes, where we consider full multi-dimensional models with twisted magnetic fields representative of the surrounding magnetic flux rope. This requires the ability to compute accurate 2.5 dimensional magnetohydrodynamic equilibria that balance Lorentz forces, gravity, and pressure gradients, while containing density enhancements (static or in motion). Methods. The governing extended Grad-Shafranov equation is discussed, along with an analytic prediction for circular flux ropes for the Shafranov shift of the central magnetic axis due to gravity. Numerical equilibria are computed with a finite element-based code, demonstrating fourth order accuracy on an explicitly known, non-trivial test case. Results. The code is then used to construct more realistic prominence equilibria, for all three possible choices of a free flux-function. We quantify the influence of gravity, and generate cool condensations in hot cavities, as well as multi- layered prominences. Conclusions. The internal flux rope equilibria computed here have the prerequisite numerical accuracy to allow a yet more advanced analysis of the complete spectrum of linear magnetohydrodynamic perturbations, as will be demonstrated in the companion paper.Comment: Accepted by Astronomy & Astrophysics, 15 pages, 15 figure

    Non-hexagonal-ring defects and structures induced by strain in graphene and in functionalized graphene

    Full text link
    We perform {\textit ab initio} calculations for the strain-induced formation of non-hexagonal-ring defects in graphene, graphane (planar CH), and graphenol (planar COH). We find that the simplest of such topological defects, the Stone-Wales defect, acts as a seed for strain-induced dissociation and multiplication of topological defects. Through the application of inhomogeneous deformations to graphene, graphane and graphenol with initially small concentrations of pentagonal and heptagonal rings, we obtain several novel stable structures that possess, at the same time, large concentrations of non-hexagonal rings (from fourfold to elevenfold) and small formation energies

    Magnetism and half-metallicity at the O surfaces of ceramic oxides

    Get PDF
    The occurence of spin-polarization at ZrO2_{2}, Al2_{2}O3_{3} and MgO surfaces is proved by means of \textit{ab-initio} calculations within the density functional theory. Large spin moments, as high as 1.56 μB\mu_B, develop at O-ended polar terminations, transforming the non-magnetic insulator into a half-metal. The magnetic moments mainly reside in the surface oxygen atoms and their origin is related to the existence of 2p2p holes of well-defined spin polarization at the valence band of the ionic oxide. The direct relation between magnetization and local loss of donor charge makes possible to extend the magnetization mechanism beyond surface properties

    Electronic structure interpolation via atomic orbitals

    Full text link
    We present an efficient scheme for accurate electronic structure interpolations based on the systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse kk-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals (LCAO) algorithms. We find that usually 16 -- 25 orbitals per atom can give an accuracy of about 10 meV compared to the full {\it ab initio} calculations. The current scheme has several advantages over the existing interpolation schemes. The scheme is easy to implement and robust which works equally well for metallic systems and systems with complex band structures. Furthermore, the atomic orbitals have much better transferability than the Shirley's basis and Wannier functions, which is very useful for the perturbation calculations

    Quantum phase interference (Berry phase) in single-molecule magnets of Mn12

    Full text link
    Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.Comment: 3 pages, 4 figures, MMM'01 conference (12-16 Nov.
    corecore