35 research outputs found

    Tshz1 regulates pancreatic beta cell maturation.

    No full text
    International audienceThe homeodomain transcription factor Pdx1 controls pancreas organogenesis, specification of endocrine pancreas progenitors, and the postnatal growth and function of pancreatic β-cells. Pdx1 expression in human-derived stem cells is used as a marker for induced pancreatic precursor cells. Unfortunately, the differentiation efficiency of human pancreatic progenitors into functional β-cells is poor. In order to gain insight into the genes that Pdx1 regulates during differentiation, we performed Pdx1 chromatin immunoprecipitation followed by high-throughput sequencing of embryonic day (e) 13.5 and 15.5 mouse pancreata. From this, we identified the transcription factor Teashirt zinc finger 1 (Tshz1) as a direct Pdx1 target. Tshz1 is expressed in developing and adult insulin- and glucagon-positive cells. Endocrine cells are properly specified in Tshz1-null embryos, but critical regulators of β-cell (Pdx1 and Nkx6.1) and α-cell (MafB and Arx) formation and function are downregulated. Adult Tshz1(+/-) mice display glucose intolerance due to defects in glucose-stimulated insulin secretion associated with reduced Pdx1 and Clec16a expression in Tshz1(+/-) islets. Lastly, we demonstrate that TSHZ1 levels are reduced in human islets of donors with type 2 diabetes. Thus, we position Tshz1 in the transcriptional network of maturing β-cells and suggest that its dysregulation could contribute to the islet phenotype of human type 2 diabetes

    Mitofusins Mfn1 and Mfn2 are required to preserve glucose- but not incretin-stimulated beta cell connectivity and insulin secretion

    Get PDF
    Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic beta cells. Whether mitofusin gene expression, and hence mitochondrial network integrity, is important for glucose or incretin signalling has not previously been explored. Here, we generated mice with beta cell-selective, adult-restricted deletion of the mitofusin genes Mfn1 and Mfn2 (βMfn1/2 dKO). βMfn1/2 dKO mice displayed elevated fed and fasted glycaemia and a >five-fold decrease in plasma insulin. Mitochondrial length, glucose-induced polarisation, ATP synthesis, cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in βMfn1/2 dKO mice and GLP-1 or GIP receptor agonists largely corrected defective GSIS through enhanced EPAC-dependent signalling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the beta cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in beta cells, the potential contributions of altered mitochondrial dynamics to diabetes development and the impact of incretins on this process
    corecore