42 research outputs found

    Recommendation Systems Based on Association Rule Mining for a Target Object by Evolutionary Algorithms

    Get PDF
    Recommender systems are designed for offering products to the potential customers. Collaborative Filtering is known as a common way in Recommender systems which offers recommendations made by similar users in the case of entering time and previous transactions. Low accuracy of suggestions due to a database is one of the main concerns about collaborative filtering recommender systems. In this field, numerous researches have been done using associative rules for recommendation systems to improve accuracy but runtime of rule-based recommendation systems is high and cannot be used in the real world. So, many researchers suggest using evolutionary algorithms for finding relative best rules at runtime very fast. The present study investigated the works done for producing associative rules with higher speed and quality. In the first step Apriori-based algorithm will be introduced which is used for recommendation systems and then the Particle Swarm Optimization algorithm will be described and the issues of these 2 work will be discussed. Studying this research could help to know the issues in this research field and produce suggestions which have higher speed and quality

    The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device

    Get PDF
    BACKGROUND: Early right-sided heart failure (RHF) after left ventricular assist device (LVAD) implantation is associated with increased mortality, but little is known about patients who develop late RHF (LRHF). We evaluated the incidence, risk factors, and clinical impact of LRHF in patients supported by axial-flow LVADs. METHODS: Data were analyzed from 537 patients enrolled in the HeartMate II (HM II; Thoratec/St. Jude) destination therapy clinical trial. LRHF was defined as the development of clinical RHF accompanied by the need for inotropic support occurring more than 30 days after discharge from the index LVAD implant hospitalization. Clinical variables, quality of life, rehospitalizations, and survival were compared between patients with and without LRHF. RESULTS: LRHF developed in 41 patients (8%), with a median time to LRHF of 480 days. A higher preoperative blood urea nitrogen and increased central venous pressure-to-pulmonary capillary wedge pressure ratio were independent predictors of LRHF. The Michigan and HMII RHF risk scores were both associated with an increased likelihood of LRHF (p < 0.05). Patients with LRHF had worse quality of life according to the Kansas City Cardiomyopathy Questionnaire (61 ± 26 vs 70 ± 21; p < 0.05), poorer functional capacity by 6-minute walk distance (275 ± 189 m vs 312 ± 216 m; p < 0.05), and more rehospitalizations (6 vs 3; p < 0.001). LRHF was associated with decreased survival (p < 0.001). CONCLUSIONS: LRHF is an important complication in patients with LVADs and is associated with worse quality of life, reduced functional capacity, more frequent hospitalizations, and worse survival compared with those without LRHF

    Validation and Psychological Properties of the Persian Version of DSM 5 Yale Food Addiction Scale 2.0 (PYFAS 2.0) in Non-clinical Population

    Get PDF
    Background: The Yale Food Addiction Scale version 2.0 (YFAS 2.0) is used for the assessment of food addiction (FA). This research intended to evaluate the validity of the Persian translation of the questionnaire and to investigate the psychological properties and the association between FA and anthropometric indices.Methods: In a sample of 473 nonclinical participants, FA, binge eating, and objectively measured anthropometric indices were assessed. Internal consistency, convergent, and validity of the PYFAS 2.0 were examined. Also, the factor structure (confirmatory factor analysis following the 11 diagnostic indicators in addition to the significant distress) and the construct of the scale were evaluated.Findings: The frequencies of mild, moderate, and severe FA based on PYFAS 2.0 were 0.2%, 10%, and 5.5%, respectively. The findings supported a one-factor structure. The confirmatory factor analysis revealed a good construct validity (RMSEA=0.043, χ2=76.38, df=41, χ2 (CMIN)/df=1.862, GFI=0.975, AGFI=0.957, IFI=0.986, RFI=0.958, ECVI=0.319, TLI=0.978). For both the diagnostic and symptom count versions, the PYFAS 2.0 presented acceptable internal consistency (IC) (Kuder-Richardson 20=0.99 and McDonald omega=0.91).Conclusion: The PYFAS 2.0 was a psychometrically sound instrument in an Iranian non-clinical population. This questionnaire can be used to study FA in Persian non-clinical populations. Future research should study the psychometric characteristics of this scale in high-risk groups

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Mechanisms of Cardiac Allograft Vasculopathy : Insights from experimental models of transplant intimal hyperplasia

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experimentally designed optimized conditions for catalytic performance of nanostructured RuO 2 in Biginelli reaction

    No full text
    Abstract Nanostructured RuO 2 powders were synthesized via a hydrothermal method at 180 °C for 12 h using 1 and 2 M NaOH aqueous solutions. The structure of the obtained nanomaterials was investigated by powder X-ray diffraction (PXRD) technique. The morphology the obtained materials were studied by field emission scanning electron microscope (FESEM). The technique showed that with changing the reaction rout, the homogeneity of the size and morphology of the synthesized nanomaterials were changed. It was found that the morphology of the obtained materials were spherical particles using 2 M NaOH aqueous solution. Catalytic performance of the synthesized nanomaterials was investigated in Biginelli reactions for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) using Benzaldehyde derivatives, urea and ethylacetoacetate as raw materials. Experimental design method was used to obtain optimized reaction conditions. It was found that the optimized conditions were 0.028 g of catalyst, 110 °C reaction temperature and 66 min reaction time. JNS All rights reserve
    corecore