54 research outputs found

    Ground Penetrating Radar in Dam Monitoring: The Test Case of Acerenza (Southern Italy)

    Get PDF
    Nowadays, dam safety management is gaining great importance since it affects in a crucial way the monitoring and improvement of risky reservoirs, but this topic is very challenging since the dam safety requires long-term and time-continuous monitoring. In this framework, the exploitation of conventional geotechnical investigation methods often requires invasive actions in the inner of the structure to be investigated (destructiveness) and only provides punctual information for small volumes. On the contrary, the application of noninvasive sensing techniques makes it possible to investigate higher volumes without affecting the structure. In this paper we describe the application of GPR for the monitoring and diagnostics of one of the largest dams in the Basilicata region (Southern Italy). The investigation aims at detecting and localizing underground sandstone banks that are potential ways of flow of water below the dam. The manageability and the noninvasiveness of GPR have resulted in particularly suitable for this kind of application because the versatility of this geophysical method allows to investigate large areas with a good spatial resolution giving the possibility to detect the presence of inhomogeneities in the subsoil below the dam

    Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

    Get PDF
    Benign familial neonatal convulsion (BFNC) is a rare autosomal dominant disorder caused by mutations in KCNQ2 and KCNQ3, two genes encoding for potassium channel subunits. A large family with nine members affected by BFNC is described in the present study. All affected members of this family carry a novel deletion/insertion mutation in the KCNQ2 gene (c.761_770del10insA), which determines a premature truncation of the protein. In addition, in the family of the proposita's father, a novel sequence variant (c.2687A>G) in KCNQ3 leading to the p.N821S amino acid change was detected. When heterologously expressed in Chinese hamster ovary cells, KCNQ2 subunits carrying the mutation failed to form functional potassium channels in homomeric configuration and did not affect channels formed by KCNQ2 and/or KCNQ3 subunits. On the other hand, homomeric and heteromeric potassium channels formed by KCNQ3 subunits carrying the p.N821S variant were indistinguishable from those formed by wild-type KCNQ3 subunits. Finally, the current density of the cells mimicking the double heterozygotic condition for both KCNQ2 and KCNQ3 alleles of the proband was decreased by approximately 25% when compared to cells expressing only wild-type alleles. Collectively, these results suggest that, in the family investigated, the KCNQ2 mutation is responsible for the BFNC phenotype, possibly because of haplo-insufficiency, whereas the KCNQ3 variant is functionally silent, a result compatible with its lack of segregation with the BFNC phenotyp

    Activation of Kv7 potassium channels inhibits intracellular Ca2+ increases triggered by TRPV1-mediated pain-inducing stimuli in F11 immortalized sensory neurons

    Get PDF
    Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits

    Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

    Get PDF
    Benign familial neonatal convulsion (BFNC) is a rare autosomal dominant disorder caused by mutations in KCNQ2 and KCNQ3, two genes encoding for potassium channel subunits. A large family with nine members affected by BFNC is described in the present study. All affected members of this family carry a novel deletion/insertion mutation in the KCNQ2 gene (c.761_770del10insA), which determines a premature truncation of the protein. In addition, in the family of the proposita's father, a novel sequence variant (c.2687A>G) in KCNQ3 leading to the p.N821S amino acid change was detected. When heterologously expressed in Chinese hamster ovary cells, KCNQ2 subunits carrying the mutation failed to form functional potassium channels in homomeric configuration and did not affect channels formed by KCNQ2 and/or KCNQ3 subunits. On the other hand, homomeric and heteromeric potassium channels formed by KCNQ3 subunits carrying the p.N821S variant were indistinguishable from those formed by wild-type KCNQ3 subunits. Finally, the current density of the cells mimicking the double heterozygotic condition for both KCNQ2 and KCNQ3 alleles of the proband was decreased by approximately 25% when compared to cells expressing only wild-type alleles. Collectively, these results suggest that, in the family investigated, the KCNQ2 mutation is responsible for the BFNC phenotype, possibly because of haplo-insufficiency, whereas the KCNQ3 variant is functionally silent, a result compatible with its lack of segregation with the BFNC phenotype

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity.

    Get PDF
    Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ

    A study on the correlation between the perceived comfort and the muscular activity, using virtual simulation techniques

    No full text
    General comfort may be defined as the “level of well-being” perceived by humans in a working environment. The state-of-the-art about evaluation of comfort/discomfort shows the need for an objective method to evaluate the “effect in the internal body” and “perceived effects” in main systems of comfort perception. Some medical studies show that each human joint has its own natural Rest Posture (RP); in this Rest Posture human muscles are completely relaxed or at minimum strain level: when it happens the geometrical configuration corresponds to the natural position of resting for Arms/Legs/Neck etc.. From this starting point, authors developed and build, through a wide experimental campaign, the postural-comfort curves for each Degree of Freedom (DOF) of human upper-limbs’ joints and a software, named CAMan, that is able to analyse a general posture and calculate a postural comfort index for the entire upper body. In this paper, this postural comfort analysis has been compared with the virtual simulation results coming from ANYBODY Software. A detailed study has been conducted on the upper body muscular activation during upper limbs movement with and without any load. Postures have been analysed both by ANYBODY and by CA-Man in order to correlate the postural (dis)comfort perception with the calculated muscular activity. Interesting findings about the relation between perceived comfort and limits of Joints’ Range of Motion (ROM) are shown

    Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction

    No full text
    Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8–3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts
    • …
    corecore