16 research outputs found

    CO Oxidation Over Monolayer Manganese Oxide Films on Pt(111)

    No full text
    Ultrathin manganese oxide films grown on Pt(111) were examined in the low temperature CO oxidation reaction at near atmospheric pressures. Structural characterization was performed by X-ray photoelectron spectroscopy, Auger electron spectroscopy, high-resolution electron energy loss spectroscopy, and temperature programmed desorption. The results show that the reactivity of MnOsub>x ultrathin films is governed by a weakly bonded oxygen species, which may even be formed at low oxygen pressures (~10−6 mbar). For stable catalytic performance at realistic conditions the films required highly oxidizing conditions (CO:Osub>2 < 1:10), otherwise the films dewetted, ultimately resulting in the catalyst deactivation. Comparison with other thin films on Pt(111) shows, that the desorption temperature of weakly bonded oxygen species can be used as a benchmark for its activity in this reaction

    Structure dependent effect of silicon on the oxidation of Al(111) and Al(100)

    No full text
    The effect of sub-monolayer silicon on the oxidation of Al(111) and Al(100) surfaces was investigated using X-ray Photoelectron Spectroscopy (XPS) and density functional theory (DFT) calculations. On both surfaces the adatom site is preferred over substituting Si into the Al-lattice; on Al(100) the four fold hollow site is vastly favored whereas on Al(111) bridge and hollow sites are almost equal in energy. Upon O 2 exposure, Si is not oxidized but buried at the metal/oxide interface under the growing aluminum oxide. On Al(111), Si has a catalytic effect on both the initial oxidation by aiding in creating a higher local oxygen coverage in the early stages of oxidation and, in particular, at higher oxide coverages by facilitating lifting Al from the metal into the oxide. The final oxide, as measured from the Al2p intensity, is 25–30% thicker with Si than without. This observation is valid for both 0.1 monolayer (ML) and 0.3 ML Si coverage. On Al(100), on the other hand, at 0.16 ML Si coverage, the initial oxidation is faster than for the bare surface due to Si island edges being active in the oxide growth. At 0.5 ML Si coverage the oxidation is slower, as the islands coalesce and he amount of edges reduces. Upon oxide formation the effect of Si vanishes as it is overgrown by Al 2 O 3 , and the oxide thickness is only 6% higher than on bare Al(100), for both Si coverages studied. Our findings indicate that, in addition to a vanishing oxygen adsorption energy and Mott potential, a detailed picture of atom exchange and transport at the metal/oxide interface has to be taken into account to explain the limiting oxide thickness

    Glutaraldehyde Cross-linking of HIV-1 Env Trimers Skews the Antibody Subclass Response in Mice

    No full text
    Well-ordered soluble HIV-1 envelope glycoprotein (Env) spike mimetics such as Native Flexibly Linked (NFL) trimers display high homogeneity, desired antigenicity, and high in vitro stability compared to previous generation soluble HIV-1 Env trimers. Glutaraldehyde (GLA) cross-linking was shown to further increase the thermostability of clade C 16055 NFL trimers and enhance the induction of tier 2 autologous neutralizing antibodies in guinea pigs. Here, we investigated if GLA fixation affected other aspects of the Env-specific immune response by performing a comparative immunogenicity study in C57BL/6 mice with non-fixed and GLA-fixed 16055 NFL trimers administered in AbISCO-100 adjuvant. We detected lower Env-specific binding antibody titers and increased skewing toward Th2 responses in mice immunized with GLA-fixed trimers compared to mice immunized with unfixed trimers, as shown by a higher Env-specific IgG1:IgG2b antibody subclass ratio. These results suggest that the presence of GLA adducts on Env influences the quality of the induced antibody response

    The thickness of native oxides on aluminum alloys and single crystals

    No full text
    We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness

    The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst

    No full text
    The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2_2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2_2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2_2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2_2 methanol synthesis

    Ambient Pressure Oxidation-Reduction Dynamics of Cu/ZnO Model Catalysts for Methanol Synthesis

    No full text
    We investigated Cu/ZnO model catalysts for methanol synthesis to obtain an atomistic picture of activation and deactivation processes under in situ oxidizing and reducing conditions. We have investigated Cu nanoparticles with different shapes and aspect ratios grown epitaxially on basal and vicinal ZnO surfaces at elevated gas pressures by high energy grazing incidence X-ray diffraction and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). We find that the Cu nanoparticles are fully oxidized to Cu2O under atmospheric conditions at room temperature. During oxidation, they maintain their epitaxy on basal ZnO (000-1) surfaces, whereas on the vicinal ZnO (10-14) surface, the nanoparticles undergo a coherent tilt. We find that the oxidation process is fully reversible under H2 flow at 500 K, resulting in predominantly well-aligned nanoparticles on the basal surfaces, whereas a random orientation is preferred for the (10-14) surface. Under CO2 flow, no diffraction signal from the nanoparticles is detected, pointing to their completely disordered state. The AP-XPS results are in line with the formation of CuO. The analysis of the substrate crystal truncation rods evidences the stability of basal ZnO surfaces under all gas conditions. No proof for Cu-Zn alloy formation is found. Scanning electron microscopy images show that massive mass transport has set in, leading to the formation of larger agglomerates, which is detrimental to the catalyst’s performance

    Ambient Pressure Oxidation-Reduction Dynamics of Cu/ZnO Model Catalysts for Methanol Synthesis

    No full text
    We investigated Cu/ZnO model catalysts for methanol synthesis to obtain an atomistic picture of activation and deactivation processes under in situ oxidizing and reducing conditions. We have investigated Cu nanoparticles with different shapes and aspect ratios grown epitaxially on basal and vicinal ZnO surfaces at elevated gas pressures by high energy grazing incidence X-ray diffraction and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). We find that the Cu nanoparticles are fully oxidized to Cu2_2O under atmospheric conditions at room temperature. During oxidation, they maintain their epitaxy on basal ZnO (000-1) surfaces, whereas on the vicinal ZnO (10-14) surface, the nanoparticles undergo a coherent tilt. We find that the oxidation process is fully reversible under H2 flow at 500 K, resulting in predominantly well-aligned nanoparticles on the basal surfaces, whereas a random orientation is preferred for the (10-14) surface. Under CO2_2 flow, no diffraction signal from the nanoparticles is detected, pointing to their completely disordered state. The AP-XPS results are in line with the formation of CuO. The analys is of the substrate crystal truncation rods evidences the stability of basal ZnO surfaces under all gas conditions. No proof for Cu-Zn alloy formation is found. Scanning electron microscopy images show that massive mass transport has set in, leading to the formation of larger agglomerates, which is detrimental to the catalyst’s performance
    corecore