85 research outputs found
Spectroscopy of Na<sup>+</sup>·Rg and transport coefficients of Na<sup>+</sup> in Rg (Rg=He-Rn)
High-level ab initio calculations are used to obtain accurate potential energy curves for Na+·Kr, Na+·Xe, and Na+·Rn. These data are used to calculate spectroscopic parameters for these three species, and the data for the whole Na+·Rg series (Rg=He-Rn) are compared. Potentials for the whole series are then used to calculate both mobilities and diffusion coefficients for Na+ moving through a bath of each of the six rare gases, under conditions that match previous experimental determinations. Different available potentials and experimental data are then statistically compared. It is concluded that the present potentials are very accurate. The potential and other data for Na+·Rn appear to be the first such reported
Ab initio investigation of intermolecular interactions in solid benzene
A computational strategy for the evaluation of the crystal lattice constants
and cohesive energy of the weakly bound molecular solids is proposed. The
strategy is based on the high level ab initio coupled-cluster determination of
the pairwise additive contribution to the interaction energy. The
zero-point-energy correction and non-additive contributions to the interaction
energy are treated using density functional methods. The experimental crystal
lattice constants of the solid benzene are reproduced, and the value of 480
meV/molecule is calculated for its cohesive energy
Feshbach resonances in ultracold atom-molecule collisions
We investigate the presence of Feshbach resonances in ultracold
alkali-dialkali reactive collisions. Quantum scattering calculations are
performed on a new Na_3 quartet potential energy surface. An analysis of
scattering features is performed through a systematic variation of the
nonadditive three-body interaction potential. Our results should provide useful
information for interpreting future atom-molecule collision experiments.Comment: 7 pages, 6 figure
Cold collisions of OH and Rb. I: the free collision
We have calculated elastic and state-resolved inelastic cross sections for
cold and ultracold collisions in the Rb() + OH() system,
including fine-structure and hyperfine effects. We have developed a new set of
five potential energy surfaces for Rb-OH() from high-level {\em ab
initio} electronic structure calculations, which exhibit conical intersections
between covalent and ion-pair states. The surfaces are transformed to a
quasidiabatic representation. The collision problem is expanded in a set of
channels suitable for handling the system in the presence of electric and/or
magnetic fields, although we consider the zero-field limit in this work.
Because of the large number of scattering channels involved, we propose and
make use of suitable approximations. To account for the hyperfine structure of
both collision partners in the short-range region we develop a
frame-transformation procedure which includes most of the hyperfine
Hamiltonian. Scattering cross sections on the order of cm are
predicted for temperatures typical of Stark decelerators. We also conclude that
spin orientation of the partners is completely disrupted during the collision.
Implications for both sympathetic cooling of OH molecules in an environment of
ultracold Rb atoms and experimental observability of the collisions are
discussed.Comment: 20 pages, 16 figure
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
A trapped single ion inside a Bose-Einstein condensate
Improved control of the motional and internal quantum states of ultracold
neutral atoms and ions has opened intriguing possibilities for quantum
simulation and quantum computation. Many-body effects have been explored with
hundreds of thousands of quantum-degenerate neutral atoms and coherent
light-matter interfaces have been built. Systems of single or a few trapped
ions have been used to demonstrate universal quantum computing algorithms and
to detect variations of fundamental constants in precision atomic clocks. Until
now, atomic quantum gases and single trapped ions have been treated separately
in experiments. Here we investigate whether they can be advantageously combined
into one hybrid system, by exploring the immersion of a single trapped ion into
a Bose-Einstein condensate of neutral atoms. We demonstrate independent control
over the two components within the hybrid system, study the fundamental
interaction processes and observe sympathetic cooling of the single ion by the
condensate. Our experiment calls for further research into the possibility of
using this technique for the continuous cooling of quantum computers. We also
anticipate that it will lead to explorations of entanglement in hybrid quantum
systems and to fundamental studies of the decoherence of a single, locally
controlled impurity particle coupled to a quantum environment
Spectroscopy of Na+⋅Rg and transport coefficients of Na+ in Rg(Rg=He–Rn)
High-level ab initio calculations are used to obtain accurate potential energy curves for Na+·Kr, Na+·Xe, and Na+·Rn. These data are used to calculate spectroscopic parameters for these three species, and the data for the whole Na+·Rg series (Rg=He-Rn) are compared. Potentials for the whole series are then used to calculate both mobilities and diffusion coefficients for Na+ moving through a bath of each of the six rare gases, under conditions that match previous experimental determinations. Different available potentials and experimental data are then statistically compared. It is concluded that the present potentials are very accurate. The potential and other data for Na+·Rn appear to be the first such reported
Theory and applications of atomic and ionic polarizabilities
Atomic polarization phenomena impinge upon a number of areas and processes in
physics. The dielectric constant and refractive index of any gas are examples
of macroscopic properties that are largely determined by the dipole
polarizability. When it comes to microscopic phenomena, the existence of
alkaline-earth anions and the recently discovered ability of positrons to bind
to many atoms are predominantly due to the polarization interaction. An
imperfect knowledge of atomic polarizabilities is presently looming as the
largest source of uncertainty in the new generation of optical frequency
standards. Accurate polarizabilities for the group I and II atoms and ions of
the periodic table have recently become available by a variety of techniques.
These include refined many-body perturbation theory and coupled-cluster
calculations sometimes combined with precise experimental data for selected
transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index
measurements in microwave cavities, ab initio calculations of atomic structures
using explicitly correlated wave functions, interferometry with atom beams, and
velocity changes of laser cooled atoms induced by an electric field. This
review examines existing theoretical methods of determining atomic and ionic
polarizabilities, and discusses their relevance to various applications with
particular emphasis on cold-atom physics and the metrology of atomic frequency
standards.Comment: Review paper, 44 page
Theoretical study of M+ RG2: (M+= Ca, Sr, Ba and Ra; RG= He–Rn)
Ab initio calculations were employed to investigate M+ RG2 species, where M+ = Ca, Sr, Ba and Ra and RG= He–Rn. Geometries have been optimized, and cuts through the potential energy surfaces containing each global minimum have been calculated at the MP2 level of theory, employing triple-ζ quality basis sets. The interaction energies for these complexes were calculated employing the RCCSD(T) level of theory with quadruple-ζ quality basis sets. Trends in binding energies, De, equilibrium bond lengths, Re, and bond angles are discussed and rationalized by analyzing the electronic density. Mulliken, natural population, and atoms-in-molecules (AIM) population analyses are presented. It is found that some of these complexes involving the heavier Group 2 metals are bent whereas others are linear, deviating from observations for the corresponding Be and Mg metal-containing complexes, which have all previously been found to be bent. The results are discussed in terms of orbital hybridization and the different types of interaction present in these species
- …