7,234 research outputs found

    Entangled coherent states and squeezing in N trapped ions

    Get PDF
    We consider a resonant bichromatic excitation of N trapped ions that generates displacement and squeezing in their collective motion conditioned to their ionic internal state, producing eventually Scrhodinger cat states and entangled squeezing. Furthermore, we study the case of tetrachromatic illumination or producing the so called entangled coherent states in two motional normal modes.Comment: 4 Revtex pages, no figures. To appear in Proceedings of "Mysteries, Puzzles and Paradoxes in Quantum Mechanics", Garda Lake, Italy (2001

    Field squeeze operators in optical cavities with atomic ensembles

    Full text link
    We propose a method of generating unitarily single and two-mode field squeezing in an optical cavity with an atomic cloud. Through a suitable laser system, we are able to engineer a squeeze field operator decoupled from the atomic degrees of freedom, yielding a large squeeze parameter that is scaled up by the number of atoms, and realizing degenerate and non-degenerate parametric amplification. By means of the input-output theory we show that ideal squeezed states and perfect squeezing could be approached at the output. The scheme is robust to decoherence processes.Comment: Four pages and one figure. Accepted in Physical Review Letter

    Operational multipartite entanglement classes for symmetric photonic qubit states

    Full text link
    We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.Comment: 5 pages, 1 figur

    Reliable teleportation in trapped ions

    Full text link
    We study a method for the implementation of a reliable teleportation protocol (theoretically, 100% of success) of internal states in trapped ions. The generation of the quantum channel (any of four Bell states) may be done respecting technical limitations on individual addressing and without claiming the Lamb-Dicke regime. An adequate Bell analyzer, that transforms unitarily the Bell basis into a completely disentangled one, is considered. Probable sources of error and fidelity estimations of the teleportation process are studied. Finally, we discuss experimental issues, proposing a scenario in which the present scheme could be implemented.Comment: 8 Latex pages with five (ps,eps) figures included (EPJ style also included). Accepted for publication in European Physical Journal

    Unitary expansion of the time evolution operator

    Full text link
    We propose an expansion of the unitary evolution operator, associated to a given Schr\"odinger equation, in terms of a finite product of explicit unitary operators. In this manner, this unitary expansion can be truncated at the desired level of approximation, as shown in the given examples.Comment: 6 pages, 7 figures. Updated version, minor final change

    Digitized-counterdiabatic quantum factorization

    Full text link
    We factorize a 48-bit integer using 10 trapped-ion qubits on a Quantinuum's quantum computer. This result outperforms the recent achievement by B. Yan et al., arXiv:2212.12372 (2022), increasing the success probability by a factor of 6 with a non-hybrid digitized-counterdiabatic quantum factorization (DCQF) algorithm. We expect better results with hybrid DCQF methods on our path to factoring RSA-64, RSA-128, and RSA-2048 in this NISQ era, where the latter case may need digital-analog quantum computing (DAQC) encoding

    Singular Lagrangian Systems on Jet Bundles

    Get PDF
    The jet bundle description of time-dependent mechanics is revisited. The constraint algorithm for singular Lagrangians is discussed and an exhaustive description of the constraint functions is given. By means of auxiliary connections we give a basis of constraint functions in the Lagrangian and Hamiltonian sides. An additional description of constraints is also given considering at the same time compatibility, stability and second-order condition problems. Finally, a classification of the constraints in first and second class is obtained using a cosymplectic geometry setting. Using the second class constraints, a Dirac bracket is introduced, extending the well-known construction by Dirac.Comment: 65 pages. LaTeX fil
    corecore