91 research outputs found

    Validation of RNA Extraction Methods and Suitable Reference Genes for Gene Expression Studies in Developing Fetal Human Inner Ear Tissue

    Get PDF
    \ua9 2024 by the authors.A comprehensive gene expression investigation requires high-quality RNA extraction, in sufficient amounts for real-time quantitative polymerase chain reaction and next-generation sequencing. In this work, we compared different RNA extraction methods and evaluated different reference genes for gene expression studies in the fetal human inner ear. We compared the RNA extracted from formalin-fixed paraffin-embedded tissue with fresh tissue stored at −80 \ub0C in RNAlater solution and validated the expression stability of 12 reference genes (from gestational week 11 to 19). The RNA from fresh tissue in RNAlater resulted in higher amounts and a better quality of RNA than that from the paraffin-embedded tissue. The reference gene evaluation exhibited four stably expressed reference genes (B2M, HPRT1, GAPDH and GUSB). The selected reference genes were then used to examine the effect on the expression outcome of target genes (OTOF and TECTA), which are known to be regulated during inner ear development. The selected reference genes displayed no differences in the expression profile of OTOF and TECTA, which was confirmed by immunostaining. The results underline the importance of the choice of the RNA extraction method and reference genes used in gene expression studies

    2D sodium MRI of the human calf using half-sinc excitation pulses and compressed sensing

    Get PDF
    PURPOSE: Sodium MRI can be used to quantify tissue sodium concentration (TSC) in vivo; however, UTE sequences are required to capture the rapidly decaying signal. 2D MRI enables high in-plane resolution but typically has long TEs. Half-sinc excitation may enable UTE; however, twice as many readouts are necessary. Scan time can be minimized by reducing the number of signal averages (NSAs), but at a cost to SNR. We propose using compressed sensing (CS) to accelerate 2D half-sinc acquisitions while maintaining SNR and TSC. METHODS: Ex vivo and in vivo TSC were compared between 2D spiral sequences with full-sinc (TE = 0.73 ms, scan time ≈ 5 min) and half-sinc excitation (TE = 0.23 ms, scan time ≈ 10 min), with 150 NSAs. Ex vivo, these were compared to a reference 3D sequence (TE = 0.22 ms, scan time ≈ 24 min). To investigate shortening 2D scan times, half-sinc data was retrospectively reconstructed with fewer NSAs, comparing a nonuniform fast Fourier transform to CS. Resultant TSC and image quality were compared to reference 150 NSAs nonuniform fast Fourier transform images. RESULTS: TSC was significantly higher from half-sinc than from full-sinc acquisitions, ex vivo and in vivo. Ex vivo, half-sinc data more closely matched the reference 3D sequence, indicating improved accuracy. In silico modeling confirmed this was due to shorter TEs minimizing bias caused by relaxation differences between phantoms and tissue. CS was successfully applied to in vivo, half-sinc data, maintaining TSC and image quality (estimated SNR, edge sharpness, and qualitative metrics) with ≥50 NSAs. CONCLUSION: 2D sodium MRI with half-sinc excitation and CS was validated, enabling TSC quantification with 2.25 × 2.25 mm2 resolution and scan times of ≤5 mins

    Challenges and perspectives of quantitative functional sodium imaging (fNaI)

    Get PDF
    Brain function has been investigated via the blood oxygenation level dependent (BOLD) effect using magnetic resonance imaging (MRI) for the past decades. Advances in sodium imaging offer the unique chance to access signal changes directly linked to sodium ions (23Na) flux across the cell membrane, which generates action potentials, hence signal transmission in the brain. During this process 23Na transiently accumulates in the intracellular space. Here we show that quantitative functional sodium imaging (fNaI) at 3T is potentially sensitive to 23Na concentration changes during finger tapping, which can be quantified in gray and white matter regions key to motor function. For the first time, we measured a 23Na concentration change of 0.54 mmol/l in the ipsilateral cerebellum, 0.46 mmol/l in the contralateral primary motor cortex (M1), 0.27 mmol/l in the corpus callosum and -11 mmol/l in the ipsilateral M1, suggesting that fNaI is sensitive to distributed functional alterations. Open issues persist on the role of the glymphatic system in maintaining 23Na homeostasis, the role of excitation and inhibition as well as volume distributions during neuronal activity. Haemodynamic and physiological signal recordings coupled to realistic models of tissue function will be critical to understand the mechanisms of such changes and contribute to meeting the overarching challenge of measuring neuronal activity in vivo

    Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach.</p> <p>Methods</p> <p>Differentiated mouse myotube cultures (C2C12) were exposed to 5 mM creatine monohydrate (CMH) for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional <sup>1</sup>H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH<sub>2 </sub>oxidation after 24 h pre-incubation with CMH.</p> <p>Results</p> <p>The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while down-regulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the antioxidative defence system. The suggested improvement of the antioxidative defence was confirmed by a reduced intracellular DCFH<sub>2 </sub>oxidation with increasing concentrations of CMH in the 24 h pre-incubation medium.</p> <p>Conclusions</p> <p>The explorative approach of this study combined with the determination of a decreased intracellular DCFH<sub>2 </sub>oxidation revealed an additional stimulation of cellular antioxidative mechanisms when myotubes were exposed to CMH. This may contribute to an increased exercise performance mediated by increased ability to cope with training-induced increases in oxidative stress.</p

    Amiloride, fluoxetine or riluzole to reduce brain volume loss in secondary progressive multiple sclerosis: the MS-SMART four-arm RCT

    Get PDF
    Background: Neuroprotective drugs are needed to slow or prevent neurodegeneration and disability accrual in secondary progressive multiple sclerosis. Amiloride, fluoxetine and riluzole are repurposed drugs with potential neuroprotective effects. Objectives: To assess whether or not amiloride, fluoxetine and riluzole can reduce the rate of brain volume loss in people with secondary progressive multiple sclerosis over 96 weeks. The secondary objectives that were assessed were feasibility of a multiarm trial design approach, evaluation of anti-inflammatory effects, clinician- and patient-reported efficacy and three mechanistic substudies. Design: A multicentre, multiarm, randomised, double-blind, placebo-controlled, parallel-group Phase IIb trial with follow-up at 4, 8, 12, 24, 36, 48, 72 and 96 weeks. Patients, investigators (including magnetic resonance imaging analysts), and treating and independent assessing neurologists were blinded to the treatment allocation. The target sample size was 440 patients. Setting: Thirteen UK clinical neuroscience centres. Participants: Participants were aged 25–65 years, had secondary progressive multiple sclerosis with evidence of disease progression independent of relapses in the previous 2 years, and had an Expanded Disability Status Scale score of 4.0–6.5. Patients were ineligible if they could not have a magnetic resonance imaging scan; had a relapse or steroids in the previous 3 months; or had epilepsy, depression, bipolar disorder, glaucoma, bleeding disorders or significant organ comorbidities. Exclusion criteria were concurrent disease-modified treatments, immunosuppressants or selective serotonin reuptake inhibitors. Interventions: Participants received amiloride (5 mg), fluoxetine (20 mg), riluzole (50 mg) or placebo (randomised 1 : 1 : 1 : 1) twice daily. Main outcome measures: The primary end point was magnetic resonance imaging-derived percentage brain volume change at 96 weeks. Secondary end points were new/enlarging T2 lesions, pseudoatrophy, and clinician- and patient-reported measures (including the Expanded Disability Status Scale, Multiple Sclerosis Functional Composite, Symbol Digit Modalities Test, low-contrast letter visual acuity, Multiple Sclerosis Impact Scale 29 items, version 2, Multiple Sclerosis Walking Scale, version 2, and questionnaires addressing pain and fatigue). The exploratory end points included measures of persistent new T1 hypointensities and grey matter volume changes. The substudies were advanced magnetic resonance imaging, optical coherence tomography and cerebrospinal fluid analyses. Results: Between December 2014 and June 2016, 445 patients were randomised (analysed) to amiloride [n = 111 (99)], fluoxetine [n = 111 (96)], riluzole [n = 111 (99)] or placebo [n = 112 (99)]. A total of 206 randomised patients consented to the advanced magnetic resonance imaging substudy, 260 consented to the optical coherence tomography substudy and 70 consented to the cerebrospinal fluid substudy. No significant difference was seen between the active drugs and placebo in percentage brain volume change at week 96 as follows (where negative values mean more atrophy than placebo): amiloride minus placebo 0.0% (Dunnett-adjusted 95% confidence interval –0.4% to 0.5%), fluoxetine minus placebo –0.1% (Dunnett-adjusted 95% confidence interval –0.5% to 0.3%); riluzole minus placebo –0.1% (Dunnett-adjusted 95% confidence interval –0.6% to 0.3%). There was good adherence to study drugs. The proportion of patients experiencing adverse events was similar in the treatment and placebo groups. There were no emergent safety issues. Limitations: There was a lower than expected uptake in the cerebrospinal fluid substudy. Conclusions: A multiarm Phase II paradigm is efficient in determining which neuroprotective agents to take through to Phase III trials. Amiloride, fluoxetine and riluzole were not effective in reducing the brain atrophy rate in people with secondary progressive multiple sclerosis. Mechanistic pathobiological insight was gained. Future work: To use the information gained from the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART) to inform future trial design as new candidate agents are identified. Trial registration: Current Controlled Trials ISRCTN28440672, NCT01910259 and EudraCT 2012-005394-31. Funding: This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 7, No. 3. See the NIHR Journals Library website for further project information. This trial also received funding from the UK MS Society and the US National Multiple Sclerosis Society
    • …
    corecore