14 research outputs found

    Molecular modeling and ADMET predictions of flavonoids as prospective aromatase inhibitors

    Get PDF
    192-200With the advent of a myriad of treatment possibilities for breast cancer, enzyme inhibition turns out to be the prevailing strategy for inhibiting estrogen biosynthesis. Aromatization of ring A of androstenedione, testosterone and 16-hydroxytestosterone results in increased estrogen level, which embraces the risk for breast cancer. In this present research, we have targeted human placental aromatase complexed with HDDG046 (PDB ID: 4GL7) for its inhibition by several inhibitors of flavonoid derivatives and further screening those molecules for ADMET properties for assessing its credibility for acceptance in successive steps of drug discovery. Novel flavonoid derivative molecules have been designed using Maestro 10.4, based on the literature review. Further, their molecular modeling studies have been performed against the imported target PDB ID: 4GL7 using the GLIDE platform and have been subjected to ADMET assessment using the QikProp and pkCSM program. From all the series exposed to molecular modeling; 2K, 4K, 6K, 8W and 10K molecules have been subjected to ADMET study based on their interaction profile. Successively screening of these molecules led to selection of 8W molecule for further validation by pkCSM. The results obtained have been compared with the reported molecule HDDG046 which presents substantially positive outcomes for 8W in terms of CaCo2 permeability, water solubility, P- glycoprotein; hERG I, II and CYP interactions, hepatotoxicity, LD50 value and so forth. Juxtaposing the results of all the designed molecules under study, we have established that these prospective molecules especially 8W of flavonoid derivatives have the potency to inhibit the target under study, which can be useful in the treatment of breast cancer. This has been estimated based on the in silico approaches performed using Molecular Modeling which utilizes the integral function of Molecular Mechanics and Quantum Mechanics. In addition, the ADMET predictions validate their integrity for being the lead molecules in drug discovery stages in the near future

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    Š 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    Student perceptions of knowledge management and institutional readiness for online classes amid Covid-19 pandemic

    Get PDF
    Higher education has undergone substantial digital change due to the impacts of the COVID-19 pandemic, which altered the status quo in education. Universities across the globe have initiated and adapted various course delivery modes to mitigate this unprecedented situation. Among these responses, online classes continue to be the most common. Therefore, this study examines institutional knowledge management and readiness to sustain online course delivery. Adopting a qualitative research design, this study used two methods, semi-structured interviews (n15) and online open questionnaires (n42), to gather data. Reflexive thematic analysis was then used to analyse the data. The study findings underline that the adaptability, flexibility, and approachability of the virtual learning experience are critical to determining an institution’s readiness for online classes. Based on student perceptions, the faculties of digital skills, integration of innovative pedagogies, student readiness, skills and experience, and integration of learning resources are the main aspects that determine the readiness of universities for online learning

    Knowledge and awareness regarding various aspects of early childhood caries among general dental practitioners of Gujarat, India: A questionnaire study

    No full text
    Aim: The aim of this study was to evaluate the amount of knowledge and awareness regarding early childhood caries (ECC) among general dental practitioners of Gujarat state. Materials and Methods: A list of inquiries by means of questionnaires for gauging the knowledge regarding ECC was sent via E-mail to 500 general dental practitioners utilizing Google online survey form. Results: The results were based on the answers given by the participants according to their own perception and were quantified accordingly with the help of a pie chart. Conclusion: Although Dental Practitioners have good awareness regarding ECC, there is a need to update their knowledge in order to contribute towards the prevention and treatment of ECC

    Molecular modeling and ADMET predictions of flavonoids as prospective aromatase inhibitors

    No full text
    With the advent of a myriad of treatment possibilities for breast cancer, enzyme inhibition turns out to be the prevailing strategy for inhibiting estrogen biosynthesis. Aromatization of ring A of androstenedione, testosterone and 16a-hydroxytestosterone results in increased estrogen level, which embraces the risk for breast cancer. In this present research, we have targeted human placental aromatase complexed with HDDG046 (PDB ID: 4GL7) for its inhibition by several inhibitors of flavonoid derivatives and further screening those molecules for ADMET properties for assessing its credibility for acceptance in successive steps of drug discovery. Novel flavonoid derivative molecules have been designed using Maestro 10.4, based on the literature review. Further, their molecular modeling studies have been performed against the imported target PDB ID: 4GL7 using the GLIDE platform and have been subjected to ADMET assessment using the QikProp and pkCSM program. From all the series exposed to molecular modeling; 2K, 4K, 6K, 8W and 10K molecules have been subjected to ADMET study based on their interaction profile. Successively screening of these molecules led to selection of 8W molecule for further validation by pkCSM. The results obtained have been compared with the reported molecule HDDG046 which presents substantially positive outcomes for 8W in terms of CaCo2 permeability, water solubility, P- glycoprotein; hERG I, II and CYP interactions, hepatotoxicity, LD50 value and so forth. Juxtaposing the results of all the designed molecules under study, we have established that these prospective molecules especially 8W of flavonoid derivatives have the potency to inhibit the target under study, which can be useful in the treatment of breast cancer. This has been estimated based on the in silico approaches performed using Molecular Modeling which utilizes the integral function of Molecular Mechanics and Quantum Mechanics. In addition, the ADMET predictions validate their integrity for being the lead molecules in drug discovery stages in the near future

    Dysregulation of splicing proteins in head and neck squamous cell carcinoma

    No full text
    Signaling plays an important role in regulating all cellular pathways. Altered signaling is one of the hallmarks of cancers. Phosphoproteomics enables interrogation of kinase mediated signaling pathways in biological systems. In cancers, this approach can be utilized to identify aberrantly activated pathways that potentially drive proliferation and tumorigenesis. To identify signaling alterations in head and neck squamous cell carcinoma (HNSCC), we carried out proteomic and phosphoproteomic analysis of HNSCC cell lines using a combination of tandem mass tag (TMT) labeling approach and titanium dioxide-based enrichment. We identified 4,920 phosphosites corresponding to 2,212 proteins in six HNSCC cell lines compared to a normal oral cell line. Our data indicated significant enrichment of proteins associated with splicing. We observed hyperphosphorylation of SRSF protein kinase 2 (SRPK2) and its downstream substrates in HNSCC cell lines. SRPK2 is a splicing kinase, known to phosphorylate serine/arginine (SR) rich domain proteins and regulate splicing process in eukaryotes. Although genome-wide studies have reported the contribution of alternative splicing events of several genes in the progression of cancer, the involvement of splicing kinases in HNSCC is not known. In this study, we studied the role of SRPK2 in HNSCC. Inhibition of SRPK2 resulted in significant decrease in colony forming and invasive ability in a panel of HNSCC cell lines. Our results indicate that phosphorylation of SRPK2 plays a crucial role in the regulation of splicing process in HNSCC and that splicing kinases can be developed as a new class of therapeutic target in HNSCC

    IL-6 and IL-12 specifically regulate the expression of Rab5 and Rab7 via distinct signaling pathways

    No full text
    Recent studies have shown that phagosome maturation depends on the balance between pro-inflammatory and anti-inflammatory cytokines, indicating that cytokine modulates phagosome maturation. However, the mechanism of cytokine-mediated modulation of intracellular trafficking remains to be elucidated. Here, we have shown that treatment of macrophages with IL-6 specifically induce the expression of Rab5 through the activation of extracellular signal-regulated kinase, whereas IL-12 exclusively upregulate the expression of Rab7 through the activation of p38 MAPK. We have cloned the 5′-flanking regions of the rab5c or rab7 into the promoterless reporter vector. Our results have shown that cells transfected with rab5c chimera are transactivated by IL-6, and IL-12 specifically transactivates cells containing rab7 chimera. Moreover, our results also show that IL-12 induces lysosomal transport, whereas IL-6 stimulates the fusion between early compartments in macrophages and accordingly modulates Salmonella trafficking and survival in macrophages. This is the first demonstration showing that cytokine differentially regulates endocytic trafficking by controlling the expression of appropriate Rab GTPase, and provides insight into the mechanism of cytokine-mediated regulation of intracellular trafficking
    corecore