

Indian Journal of Chemistry Vol. 61, February 2022, pp. 192-200

Molecular modeling and ADMET predictions of flavonoids as prospective aromatase inhibitors

Karan Gandhi^a, Umang Shah^{*a}, Samir Patel^a, Mehul Patel^a, Sandip Patel^a, Ashish Patel^a, Swayamprakash Patel^a, Nilay Solanki^a, Ashish Shah^b & Dharmendra Baria^c

^a Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, India

^b Department of Pharmacy, Sumandeep Vidyapeeth, Piparia, Vadodara 391 760, India

^c A. R. College of Pharmacy, V. V. Nagar 388 120, India

E-mail: umangshah.ph@gmail.com

Received 21 May 2020; accepted (revised) 26 October 2021

With the advent of a myriad of treatment possibilities for breast cancer, enzyme inhibition turns out to be the prevailing strategy for inhibiting estrogen biosynthesis. Aromatization of ring A of androstenedione, testosterone and 16α-hydroxytestosterone results in increased estrogen level, which embraces the risk for breast cancer. In this present research, we have targeted human placental aromatase complexed with HDDG046 (PDB ID: 4GL7) for its inhibition by several inhibitors of flavonoid derivatives and further screening those molecules for ADMET properties for assessing its credibility for acceptance in successive steps of drug discovery. Novel flavonoid derivative molecules have been designed using Maestro 10.4, based on the literature review. Further, their molecular modeling studies have been performed against the imported target PDB ID: 4GL7 using the GLIDE platform and have been subjected to ADMET assessment using the QikProp and pkCSM program. From all the series exposed to molecular modeling; 2K, 4K, 6K, 8W and 10K molecules have been subjected to ADMET study based on their interaction profile. Successively screening of these molecules led to selection of 8W molecule for further validation by pkCSM. The results obtained have been compared with the reported molecule HDDG046 which presents substantially positive outcomes for 8W in terms of CaCo2 permeability, water solubility, P- glycoprotein; hERG I, II and CYP interactions, hepatotoxicity, LD50 value and so forth. Juxtaposing the results of all the designed molecules under study, we have established that these prospective molecules especially 8W of flavonoid derivatives have the potency to inhibit the target under study, which can be useful in the treatment of breast cancer. This has been estimated based on the *in silico* approaches performed using Molecular Modeling which utilizes the integral function of Molecular Mechanics and Quantum Mechanics. In addition, the ADMET predictions validate their integrity for being the lead molecules in drug discovery stages in the near future.

Keywords: Molecular modeling, flavonoids, aromatase inhibitors, breast cancer, ADMET, pkCSM

DNA damage and genetic mutations that are swayed by the hormone estrogen in women is responsible for inducing breast cancer¹. Early occurrence of menstruation and delayed menopause which is associated with ovarian steroidogenesis is the identifiable risk factors for causing breast cancer. Most importantly, the aromatizations of ovarian and adrenal androgens are the prominent causal factors. This has been experimentally established by provoking mammary adenocarcinomas by higher doses of estrogen. Whilst, the low doses administered over adenomas^{2,3}. longer duration induced fibro This aromatization in humans is possible by androstenedione (ASD), testosterone (TST) and 16α-hydroxytestosterone (HTST) with the help of aromatase enzyme which results into formation of C₁₈estrogens: esterone (E1), 17β -estradiol (E2) and 17β , 16α -estriol (E3) respectively (Figure 1). In this regard, aromatization of A ring occurs due to cascading oxidation of angular C₁₉-methyl group of ASD, TST and $HTST^4$.

Estrogen biosynthesis can be inhibited by the use of Aromatase inhibitors (AI's) such as exemestene, letrozole and anastrozole. These 3rd generation AI's are used for treating hormone receptor- positive breast cancer in postmenopausal women^{7,8}. Tamoxifen, being

Abbreviations: ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicity; PDB: Protein Data Bank; HER: Heregulin; SERM: Selective Estrogen Receptor Modulator; OPLS: Optimized Potentials for Liquid Simulations; RMSD: Root Mean Square Deviation; MET: Methionine; ARG: Arginine; LEU: Leucine; SER: Serine; PHE: Phenylalanine; VAL: Valine; ASH: Aspartate; ALA: Alanine; ASD: Androstenedione; TST: Testosterone; HTST: Hydroxytestosterone; TRP: Tryptophan; ILE: Isoleucine.

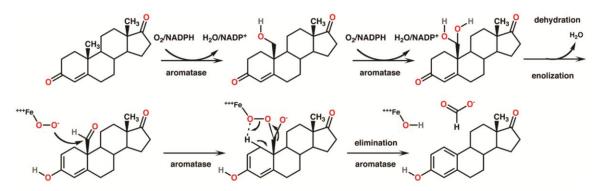


Figure 1 — Mechanism of aromatization by aromatase enzyme

a substantial hormonal anti-cancer drug has both estrogenic and anti-estrogenic biological activities, is used as an adjuvant therapy with AI's and so it is categorized as selective estrogen receptor modulator (SERM). However, it harbors side effects⁹⁻¹¹. To bolster this claim, a study was conducted among 241 women which revealed that women on a prolonged tamoxifen therapy for more than 12 months reported side effects more frequently than those on a shorter therapy duration. The most common side effects were intense warmness, vaginal dryness, depression and irritation¹².

Natural products like stilbenes, chalcones and flavonoids are also considered as AI's. Most importantly, stilbenes have been reported for its activity for suppressing inflammation, proliferation and also used as an anti-mitotic agent. The antiinflammatory action of α -viniferin (Figure 2) was established experimentally by administering it more than 3mg/kg intravenously to the mice suffering from paw edema. Additionally, the IC₅₀ value was estimated to be 4.9µM and the mechanism involved in it is cyclooxygenase-2 inhibition¹³⁻¹⁸. Flavonoids are C_{15} carbon skeleton with a heterocyclic pyran ring associated with two benzene rings. In addition, they are classified as flavone. flavonols. flavan-3-ols. xanthones. isoflavone. coumarin. flavanonol. flavanone, catechins and anthocyanidins. Moreover, the identifying feature between flavonoids and isoflavanoids is the position of benzenoid group while, flavonols and flavanones between is the presence/absence of -OH group at C-3 and an unsaturated double bond between 2^{nd} and 3^{rd} carbon¹⁹⁻²¹.

A literature review was conducted to examine different compounds that were obtained both naturally and synthetically for biological evaluation against aromatase activity in breast cancer. Primarily, antiaromatase activity was witnessed by the use of

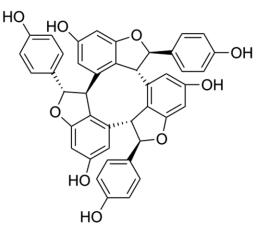


Figure 2 — Structure of α-viniferin

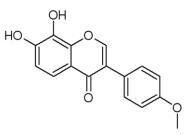
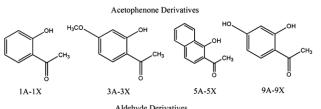


Figure 3 — Structure of Biochanin A

isoflavone, biochanin A (Figure 3) with MCF-7 and SK-BR-3 cancer cell lines. This activity was linked with the subdued mRNA expression²². The binding characteristics by flavone and isoflavone have been studied using computer modeling and it was found that these compounds bind to the active site of aromatase in an orientation in which their ring–A and –C mimic ring–D and –C of the steroidal substrate, and many aromatase inhibitors having steroidal ring system. Hence, flavonoid skeleton is selected for the computational study^{23,24}. Successively, synthetically derived flavonoids were studied from the literature review for its inhibiting activity for aromatase and depending upon²⁵⁻³². In this present study, we

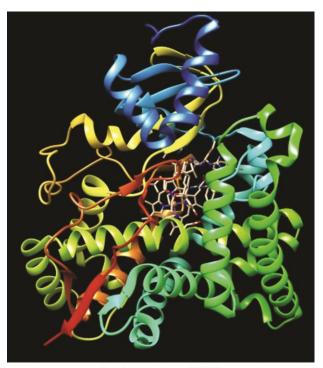
designed several flavonoids and performed *in-silico* studies to find out novel flavonoids as aromatase inhibitors with ADMET prediction (Figure 4).

The blend of molecular mechanics and quantum mechanics in molecular modeling has been a prodigy for examining vivid parameters of biological systems such as potential active site, hydrophobic/hydrophilic regions, clusters and interactions with the proteins and enzymes. The ligand-protein interaction is essential to be unraveled to design several novel molecules, which binds with the target to modulate or mimic the activity of the proteins. This aim has been successfully accomplished with the help of in silico studies which is also known as computer-aided drug designing with the help of software like maestro, autodock, gold. glide. guassian, swissdock. UCSFchimera and many more³³⁻³⁵.


Materials and Methods

Retrieving of Target Enzyme

In this present research, we have selected the target enzyme as human placental aromatase complexed with designed inhibitor HDDG046 (PDB ID: 4GL7) (Figure 5). The crystal structure has been obtained from protein data bank⁷. The retrieved aromatase structure consists of 10,13-dimethyl-6-(pent-2-yn-1yloxy)-7, 8, 9, 10, 11, 12, 13, 14, 15, 16-decahydro-3H-cyclopenta phenanthrene-3,17(6H)-dione, as a ligand bound to it. Ghosh D *et. al.* designed and validated this ligand molecule with target PDB ID: 4GL7 using molecular docking.


Protein Preparation

Protein preparation feature of maestro version 10.4, schrodinger, NY; was used to prepare the crystal structure of human placental aromatase complexed with designed inhibitor HDDG046 (PDB ID: 4GL7). Most importantly, energy minimization was subjected to the imported target crystal structure to achieve a conformation, which harbors a low ΔG value which signifies the closeness of a molecule to the biological system. It implies the lowering of potential energy of the receptor and ligand under study. In addition, the water molecules were excluded from the proximity of 5Å of the ligand while the hydrogen atoms were added. The epik version 3.4 was used for modifying the protonation state of the imported crystal structure to the pH range of 7.0 ± 2.0 . Apart from these, OPLS 2005 force field was utilized for performing geometrical modifications to a maximum root mean square deviation (RMSD) of 0.3Å³⁶⁻³⁸.

A. Veratraldehyde	M. 2,4,6-Trimethoxybenzaldehyde
B. 3-Hydroxybenzaldehyde	N. 2,3-Dimethoxybenzaldehyde
C. 4-Methoxybenzaldehyde	O. 4-Ethoxy-3-Methoxybenzaldehyde
D. 4-Chlorobenzaldehyde	P. 2,4-Dimethoxybenzaldehyde
E. 4-Fluorobenzaldehyde	Q. 4-Bromobenzaldehyde
F. 3-Chlorobenzaldehyde	R. Benzaldehyde
G. 3-Methoxybenzaldehyde	S. 3-Bromobenzaldehyde
H. Pyrolle 2-Carboxyldehyde	T. 2,4-Dihydroxybenzaldehyde
I. Pyridine 2-Carboxyldehyde	U. 3,4-Dihydroxybenzaldehyde
J. Pyridine 3-Carboxyldehyde	V. 2-Imidazolecarboxyldehyde
K. Pyridine 4-Carboxyldehyde	W. 4-Imidazolecarboxyldehyde
L. Cinnamaldehyde	X. 1-Methyl-2-Imidazolecarboxyldehyd

Figure 4 — Several flavonoid derivatives subjected to *in silico* studies.

Crystal structure of 4GL7

Figure 5 — Crystal structure of 4GL7 placental aromatase complexed with HDDG046

Ligand Preparation

These molecules were exposed to the process of minimization of energy. It was carried out by the OPLS force field in a manner that the energy disparity among the designed molecules vestiges 0.001 kJ/mol Å. Furthermore, LigPrep version 3.0, Schrodinger, LLC, New York, NY was investigated for different potential tautomer of designed molecules such that

their spatial arrangement of atoms is intact. Similarly, like enzyme preparation, the ionization states were incorporated to the molecules with the help of epik version 3.4. Finally, on the basis of torsional angles, a particular ligand was selected.

Molecular Modeling Study

The molecular modeling predictions were estimated using glide platform. Docking refers to the assessment of the binding affinity between the newly designed molecules of flavonoids from LigPrep 3.0 and the selected target of human placental aromatase enzyme which was subjected to enzyme preparation. The potential binding active sites were recognized using glide program. Most importantly, glide uses its accurate binding prediction mode to attain results with lower RMSD from the native co-crystallized structures. In this regard, a grid setup was built for performing molecular modeling studies with the grid box configuration as 30×30×30 Å and 10×10×10 Å for inner box. The van der waals radii scaling of 0.7 for the proteins was performed to sustain the maximum number of 16 poses per ligand and the residues within the proximity of 5.0 Å of ligand poses were kept free to move in the prime refinement step. Ultimately, a designed molecule of low energy with appropriate chirality was subjected to molecular modeling predictions with a setup of "Extra Precision mode (Glide XP)". The experiential scoring function has been enhanced by the addition of the water desolvation terms and specific molecular recognition patterns. Of all the collective results, the molecule with a position harboring the least delta G value during the interaction with the enzyme is selected and analyzed³⁹.

ADMET Predictions

To assure the clearance of the newly designed drug ADMET the clinical phase, (Absorption, in Distribution, Metabolism, Excretion and Toxicity) predictions are essential. So, the drugs of optimum required characteristics can be screened while those with the undesired properties can be ruled out⁴⁰. In this study, we have used the QikProp platform (version 4.6, 2015) and pkCSM which include the features of lead generation, lead optimization, improving accuracy and predicting ADMET for the ligand under observation. Kerns E.H et al. has exhibited a linkage between in vivo pharmacological activity and in vitro assay⁴¹. Moreover, the Veber rule suggests that if the number of rotatable bonds are not more than 10 then it represents good oral bioavailability. Apart from this, Abraham et

al. stated that the Log P values are affected by the parameters like molecular volume, dipolarity, H- bond acidity and H- bond alkalinity⁴². Additionally, toxicity methods include hERG block assays, mutagenicity/ genotoxicity, micronucleus essay, Comet assay, Ames assay, MTT human hepatotoxicity assay and many more can be performed using QikProp.

Here, a myriad of drug associated characteristics of designed molecules of flavonoids were assessed using QikProp platform which are substantial for screening and characterizing as lead compounds. The parameters which are examined are as follows: H-bond Donor (0.0-6.0), H-bond Acceptor (2.0-20.0), Predicted water/gas partition coefficient (QPlogpw) (5.0-48.0), Predicted octanol/water partition coefficient (QPlogPo/w) (-2.0 to 6.5), Predicted aqueous solubility (QPlogS) (-6.0 to 0.5). Here, the bracketed scores represent the standard marks for respective properties⁴³. Additionally, in this present study we have subjected lead molecule forcomprehensive ADMET our predictions using pkCSM platform which is based on graph-based signatures mainly using machine learning approaches. This platform aids in predicting certain critical parameters such as Caco2 permeability, BBB permeability, interaction of ligand with P- glycoprotein and CYP enzymes, total clearance, AMES toxicity, maximum tolerated dose for humans, hERG I and II interaction, oral rat toxicity studies, skin sensitization, minnow toxicity and many more³⁶.

Results and Discussions

The results of all the designed structures (2A-2X, 4A-4X, 6A-6X, 8A-8X and 10A-10X) docked with the target human placental aromatase were compared to the docking results of HDDG046 compound with the same target. Moreover, Table I to Table V reveal the binding energy, electrostatic energy, hydrogen bonding and hydrophobic interaction for all the series of compound designed. Most importantly, Figure 6 demonstrates the H-bonding interaction formed between the MET 374 of target and the ketone group of the pentagon ring. Additionally, other active sites for PDB: 4GL7 is investigated to be ARG 115, LEU 477, LEU 372, PHE 221, HIE 480, ARG 192, SER 478, VAL 313, VAL 369, THR 310, VAL 370, TRP 224, ALA 306, ASH 309, ILE 305, ILE 133, PHE 134 and VAL 373.

Molecular Modeling study of compounds (2A-2X)

2A-2X compounds were subjected to molecular modeling predictions which ultimately revealed a range

Table I — M	olecular M	odeling pred	iction for	compound	1 2A-2X	Table III — N	Molecular N	Iodeling pro	ediction fo	or compou	nd 6A-6X
Title	Docking	Glide	XP	XP	XP	Title	Docking	Glide	XP	XP	XP
	score	emodel	Hbond	PhobEn	Electro		score	emodel	Hbond	PhobEn	Electro
2A	-5.943	-45.268	-0.7	-0.245	-0.11	6A	-6.9	-57.726	-0.683	-0.81	-0.167
2R 2B	-6.755	-47.767	-0.462	-1.151	-0.344	6B	-7.088	-59.347	-0.7	-0.919	-0.385
2D 2C	-4.688	-50.401	-0.35	0	-0.072	6C	-6.605	-54.988	-0.7	-1.14	-0.208
20 2D	-4.206	-39.297	-0.7	-0.442	-0.172	6D	-7.027	-59.201	0	-0.841	-0.011
2D 2E	-5.616	-35.181	0.7	-1.162	0.076	6E	-6.578	-54.845	0	-0.7	-0.118
2E 2F	-6.343	-41.562	0	-1.341	-0.082	6F	-7.292	-58.804	0	-0.9	0.034
2G	-5.416	-40.712	0	-0.745	-0.002	6G	-7.087	-53.528	-0.591	-1.04	-0.164
20 2H	-7.312	-41.163	-0.688	-0.54	-0.194	6H	-6.01	-43.791	0	-1.051	-0.136
211 2I	-6.794	-36.697	-0.24	-0.807	-0.188	6I	-6.339	-46.37	0	-0.939	-0.027
21 2J	-5.783	-36.289	-0.289	-0.912	-0.229	6J	-6.897	-49.476	-0.417	-0.569	-0.209
25 2K	-8.31	-46.395	-0.69	-1.08	-0.362	6K	-8.169	-45.196	-0.673	-0.9	-0.338
21K 2L	-6.675	-41.737	0.05	-0.826	-0.064	6L	-7.59	-53.035	0	-1.162	-0.077
212 2M	-3.784	-43.484	0	-0.286	-0.196	6M	-6.086	-47.3	0	-0.95	0.208
2M 2N	-5.132	-36.967	-0.193	-0.55	-0.1	6N	-6.44	-55.048	-0.106	-1.407	-0.085
20	-5.758	-45.138	-0.7	-0.125	-0.12	60	-7.202	-62.96	0	-1.206	-0.147
20 2P	-4.521	-44.187	-0.643	-0.519	-0.348	6P	-6.77	-51.865	-0.7	-0.601	-0.124
20 2Q	-4.383	-40.553	-0.7	-0.5	-0.211	6Q	-7.268	-60.422	0	-0.94	-0.012
2Q 2R	-6.063	-37.332	0.7	-1.396	-0.116	6R	-6.446	-45.869	0	-0.899	0.007
2K 2S	-6.431	-42.191	0	-1.218	-0.039	6S	-6.974	-60.874	0	-0.832	0.044
23 2T	-6.991	-52.549	-1.625	-0.284	-0.627	6T	-7.033	-62.902	-1.625	-0.327	-0.645
21 2U	-8.204	-47.83	-1.845	-1.254	-0.637	6U	-8.005	-63.165	-0.96	-0.675	-0.112
20 2V	-6.882	-48.36	-0.7	-0.211	-0.434	6V	-7.129	-45.965	-0.688	-0.87	-0.336
2 V 2W	-6.25	-40.016	-0.406	-1.612	-0.154	6W	-6.565	-46.889	-0.7	-0.24	-0.332
2 w 2X	-5.349	-40.010 -36.181	-0.400	-1.012 -1.071	0.061	6X	-6.755	-51.053	0	-1.225	-0.066
HDDG046	-8.611	-69.782	-0.7	-0.95	-0.213	HDDG046	-8.611	-69.782	-0.7	-0.95	-0.213
		07.702	0.7	0.95	0.215						
Table II — N	folecular M	Iodeling pred	diction for	. compoun	d 4A-4X	Table IV —	Molecular N	Adeling pr	ediction for	or compou	nd 8A-8X
		Iodeling pred Glide				Table IV — I Title					
Table II — M Title	Iolecular M Docking score	Iodeling preo Glide emodel	diction for XP Hbond	XP	d 4A-4X XP Electro	Table IV — I Title	Molecular N Docking score	Aodeling pr Glide emodel	ediction fo XP Hbond	or compou XP PhobEn	nd 8A-8X XP Electro
Title	Docking score	Glide emodel	XP Hbond	XP PhobEn	XP Electro	Title	Docking	Glide	XP	XP	XP
Title 4A	Docking score -5.469	Glide emodel -48.02	XP Hbond -0.7	XP PhobEn -0.575	XP Electro -0.137	Title 8A	Docking score	Glide emodel -59.347	XP Hbond	XP PhobEn -0.919	XP Electro -0.385
Title 4A 4B	Docking score -5.469 -7.294	Glide emodel -48.02 -49.911	XP Hbond -0.7 -1.277	XP PhobEn -0.575 -0.593	XP Electro -0.137 -0.415	Title	Docking score -7.088	Glide emodel	XP Hbond -0.7	XP PhobEn	XP Electro
Title 4A 4B 4C	Docking score -5.469 -7.294 -5.791	Glide emodel -48.02 -49.911 -42.768	XP Hbond -0.7 -1.277 -1.246	XP PhobEn -0.575 -0.593 -0.35	XP Electro -0.137 -0.415 -0.385	Title 8A 8B 8C	Docking score -7.088 -7.569 -6.605	Glide emodel -59.347 -52.731	XP Hbond -0.7 -0.67 -0.7	XP PhobEn -0.919 -0.664 -1.14	XP Electro -0.385 -0.259
Title 4A 4B 4C 4D	Docking score -5.469 -7.294 -5.791 -5.752	Glide emodel -48.02 -49.911 -42.768 -45.561	XP Hbond -0.7 -1.277 -1.246 -0.659	XP PhobEn -0.575 -0.593 -0.35 -0.625	XP Electro -0.137 -0.415 -0.385 -0.119	Title 8A 8B 8C 8D	Docking score -7.088 -7.569 -6.605 -6.622	Glide emodel -59.347 -52.731 -54.988	XP Hbond -0.7 -0.67 -0.7 0	XP PhobEn -0.919 -0.664 -1.14 -0.837	XP Electro -0.385 -0.259 -0.208
Title 4A 4B 4C 4D 4E	Docking score -5.469 -7.294 -5.791 -5.752 -5.603	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166	Title 8A 8B 8C 8D 8E	Docking score -7.088 -7.569 -6.605	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425	XP Hbond -0.7 -0.67 -0.7 0 0	XP PhobEn -0.919 -0.664 -1.14	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174
Title 4A 4B 4C 4D 4E 4F	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208	Title 8A 8B 8C 8D 8E 8F	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033	XP Hbond -0.7 -0.67 -0.7 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095
Title 4A 4B 4C 4D 4E 4F 4G	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219	Title 8A 8B 8C 8D 8E 8F 8G	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213	XP Hbond -0.7 -0.67 -0.7 0 0 0 0 -0.35	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06
Title 4A 4B 4C 4D 4E 4F 4G 4H	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178	Title 8A 8B 8C 8D 8E 8F 8G 8H	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411	XP Hbond -0.7 -0.67 -0.7 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49	XP PhobEn -0.575 -0.593 -0.35 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8I 8J	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.176
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8I 8J 8K	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.35	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.176 -0.15
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616 -0.485	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.625 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8J 8K 8L	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 0 -0.35 0 0 -0.3 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.176 -0.15 -0.156
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616 -0.485 0	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.625 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8J 8K 8J 8M	Docking score -7.088 -7.569 -6.605 -6.622 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 0 -0.35 0 0 -0.3 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.176 -0.15 -0.156 -0.196
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616 -0.485 0 0	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.076	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8J 8K 8L 8M 8N	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.156\\ -0.196\\ -0.015 \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53 -6.038	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616 -0.485 0 0 -0.699	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.076 -0.126	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80	Docking score -7.088 -7.569 -6.605 -6.622 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 -0.3 0 0 -0.3 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.156 -0.156 -0.196 -0.015 -0.12
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53 -6.038 -5.334	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715	$\begin{array}{c} XP\\ Hbond\\ -0.7\\ -1.277\\ -1.246\\ -0.659\\ -0.394\\ -0.393\\ -0.526\\ -0.582\\ -0.564\\ -0.49\\ -0.616\\ -0.485\\ 0\\ 0\\ -0.699\\ 0\\ \end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4 -0.361	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.076 -0.126 0.008	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 8N 8N 80 8P	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 0 0 0 0 0 0 -0.7 -0.7	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.15 -0.156 -0.156 -0.196 -0.015 -0.12 -0.124
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53 -6.038 -5.334 -5.779	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211	$\begin{array}{c} XP\\ Hbond\\ -0.7\\ -1.277\\ -1.246\\ -0.659\\ -0.394\\ -0.393\\ -0.526\\ -0.582\\ -0.564\\ -0.49\\ -0.616\\ -0.485\\ 0\\ 0\\ -0.699\\ 0\\ -0.699\\ 0\\ -0.7\end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4 -0.361 -0.634	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.076 -0.126 0.008 -0.135	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 8N 8N 8N 80 8P 8Q	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 -0.3 0 0 -0.3 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601	XP Electro -0.385 -0.259 -0.208 -0.187 -0.174 -0.095 -0.06 -0.118 0.054 -0.15 -0.156 -0.196 -0.015 -0.12
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53 -6.038 -5.334 -5.779 -5.252	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735	$\begin{array}{c} XP\\ Hbond\\ -0.7\\ -1.277\\ -1.246\\ -0.659\\ -0.394\\ -0.393\\ -0.526\\ -0.582\\ -0.564\\ -0.49\\ -0.616\\ -0.485\\ 0\\ 0\\ -0.699\\ 0\\ -0.7\\ -0.7\\ -0.7\end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4 -0.361 -0.634 -0.589	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.076 -0.126 0.008 -0.135 -0.164	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 -0.3 0 0 -0.3 0 0 0 0 0 -0.7 -0.7 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.204\\ -0.135\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.53 -6.038 -5.334 -5.779 -5.252 -6.06	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907	$\begin{array}{c} XP\\ Hbond\\ -0.7\\ -1.277\\ -1.246\\ -0.659\\ -0.394\\ -0.393\\ -0.526\\ -0.582\\ -0.564\\ -0.49\\ -0.616\\ -0.485\\ 0\\ 0\\ -0.699\\ 0\\ -0.7\\ -0.7\\ -0.7\\ -0.7\\ -0.7\end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4 -0.361 -0.634 -0.589 -0.75	XP Electro -0.137 -0.415 -0.385 -0.119 -0.166 -0.208 -0.219 -0.178 -0.147 -0.315 -0.337 -0.352 -0.057 -0.057 -0.076 -0.126 0.008 -0.135 -0.164 -0.235	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814 -0.964	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.204\\ -0.135\\ -0.095\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -5.334 -5.53 -6.038 -5.334 -5.779 -5.252 -6.06 -8.27	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907 -52.09	XP Hbond -0.7 -1.277 -1.246 -0.659 -0.394 -0.393 -0.526 -0.582 -0.564 -0.49 -0.616 -0.485 0 0 -0.699 0 -0.7 -0.7 -0.7 -0.7 -1.905	XP PhobEn -0.575 -0.593 -0.35 -0.625 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.4 -0.361 -0.634 -0.589 -0.75 -1.194	$\begin{array}{c} XP\\ Electro\\ -0.137\\ -0.415\\ -0.385\\ -0.119\\ -0.166\\ -0.208\\ -0.219\\ -0.178\\ -0.219\\ -0.178\\ -0.147\\ -0.315\\ -0.337\\ -0.352\\ -0.057\\ -0.057\\ -0.076\\ -0.126\\ 0.008\\ -0.135\\ -0.164\\ -0.235\\ -0.671\\ \end{array}$	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S 8T	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431 -7.555	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575 -65.246	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814 -0.964 -0.206	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.204\\ -0.135\\ -0.095\\ -0.612\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 4U	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -5.334 -5.779 -5.252 -6.06 -8.27 -8.27 -8.27	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907 -52.09 -52.09	$\begin{array}{c} XP\\ Hbond\\ -0.7\\ -1.277\\ -1.246\\ -0.659\\ -0.393\\ -0.526\\ -0.582\\ -0.564\\ -0.49\\ -0.616\\ -0.485\\ 0\\ 0\\ -0.699\\ 0\\ -0.7\\ -0.7\\ -0.7\\ -0.7\\ -1.905\\ -1.905\\ -1.905\end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.519 -0.519 -0.4 -0.589 -0.75 -1.194 -1.194	$\begin{array}{c} XP\\ Electro\\ -0.137\\ -0.415\\ -0.385\\ -0.119\\ -0.166\\ -0.208\\ -0.219\\ -0.178\\ -0.219\\ -0.178\\ -0.315\\ -0.337\\ -0.352\\ -0.057\\ -0.057\\ -0.076\\ -0.126\\ 0.008\\ -0.135\\ -0.164\\ -0.235\\ -0.671\\ -0.671\\ -0.671\end{array}$	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S 8T 8U	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431 -7.555 -7.743	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575 -65.246 -62.716	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814 -0.964 -0.206 -0.341	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.204\\ -0.135\\ -0.095\\ -0.612\\ -0.639\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 4U 4V	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.334 -5.779 -5.252 -6.06 -8.277 -8.27 -4.895	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907 -52.09 -52.09 -52.09 -44.701	$\begin{array}{c} \text{XP} \\ \text{Hbond} \\ -0.7 \\ -1.277 \\ -1.246 \\ -0.659 \\ -0.393 \\ -0.526 \\ -0.582 \\ -0.564 \\ -0.49 \\ -0.616 \\ -0.485 \\ 0 \\ 0 \\ -0.616 \\ -0.485 \\ 0 \\ 0 \\ -0.7 \\ -0.7 \\ -0.7 \\ -0.7 \\ -1.905 \\ -1.905 \\ -0.18 \end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.519 -0.4 -0.361 -0.634 -0.589 -0.75 -1.194 -1.194 -0.943	$\begin{array}{c} XP\\ Electro\\ -0.137\\ -0.415\\ -0.385\\ -0.119\\ -0.166\\ -0.208\\ -0.219\\ -0.178\\ -0.219\\ -0.178\\ -0.315\\ -0.337\\ -0.352\\ -0.057\\ -0.057\\ -0.076\\ -0.126\\ 0.008\\ -0.135\\ -0.164\\ -0.235\\ -0.671\\ -0.671\\ -0.671\\ -0.196\end{array}$	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S 8T 8U 8V	Docking score -7.088 -7.569 -6.605 -6.622 -6.802 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431 -7.555	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575 -65.246	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 -0.3 0 0 0 -0.7 -0.7 0 0 0 0 -1.2 -1.92 0	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814 -0.964 -0.206 -0.341 -1.057	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.135\\ -0.095\\ -0.612\\ -0.639\\ -0.319\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 4U 4V 4W	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.334 -5.779 -5.252 -6.06 -8.277 -8.27 -4.895 -5.863	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907 -52.09 -52.09 -52.09 -44.701 -40.415	$\begin{array}{c} \text{XP} \\ \text{Hbond} \\ -0.7 \\ -1.277 \\ -1.246 \\ -0.659 \\ -0.393 \\ -0.526 \\ -0.582 \\ -0.564 \\ -0.49 \\ -0.616 \\ -0.485 \\ 0 \\ 0 \\ -0.699 \\ 0 \\ -0.7 \\ -0.7 \\ -0.7 \\ -0.7 \\ -1.905 \\ -1.905 \\ -0.18 \\ -0.358 \end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.519 -0.4 -0.589 -0.75 -1.194 -1.194 -0.943 -1.125	$\begin{array}{c} XP\\ Electro\\ -0.137\\ -0.415\\ -0.385\\ -0.119\\ -0.166\\ -0.208\\ -0.219\\ -0.178\\ -0.219\\ -0.178\\ -0.315\\ -0.337\\ -0.352\\ -0.057\\ -0.057\\ -0.076\\ -0.126\\ 0.008\\ -0.135\\ -0.164\\ -0.235\\ -0.671\\ -0.671\\ -0.671\\ -0.196\\ -0.157\\ \end{array}$	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S 8T 8U 8V	Docking score -7.088 -7.569 -6.605 -6.622 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431 -7.555 -7.743 -6.557 -9.035	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575 -65.246 -62.716 -51.801	XP Hbond -0.7 -0.67 -0.7 0 0 0 -0.35 0 0 -0.3 0 0 0 -0.3 0 0 0 0 -0.7 -0.7 0 0 0 0 -1.2 -1.92	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.601 -0.925 -0.814 -0.206 -0.341 -1.057 -1.45	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.15\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.135\\ -0.095\\ -0.612\\ -0.639\\ -0.319\\ -0.611\\ \end{array}$
Title 4A 4B 4C 4D 4E 4F 4G 4H 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 4U 4V	Docking score -5.469 -7.294 -5.791 -5.752 -5.603 -5.757 -4.34 -7.317 -6.359 -6.667 -8.679 -5.304 -6.98 -5.334 -5.779 -5.252 -6.06 -8.277 -8.27 -4.895	Glide emodel -48.02 -49.911 -42.768 -45.561 -41.271 -48.063 -41.889 -45.446 -37.38 -48.163 -48.067 -51.878 -47.02 -43.558 -52.805 -44.715 -49.211 -40.735 -46.907 -52.09 -52.09 -52.09 -44.701	$\begin{array}{c} \text{XP} \\ \text{Hbond} \\ -0.7 \\ -1.277 \\ -1.246 \\ -0.659 \\ -0.393 \\ -0.526 \\ -0.582 \\ -0.564 \\ -0.49 \\ -0.616 \\ -0.485 \\ 0 \\ 0 \\ -0.616 \\ -0.485 \\ 0 \\ 0 \\ -0.7 \\ -0.7 \\ -0.7 \\ -0.7 \\ -1.905 \\ -1.905 \\ -0.18 \end{array}$	XP PhobEn -0.575 -0.593 -0.35 -0.625 -0.55 -1.021 -0.479 -0.477 -1.107 -0.426 -1.019 -0.879 -0.51 -0.519 -0.519 -0.4 -0.361 -0.634 -0.589 -0.75 -1.194 -1.194 -0.943	$\begin{array}{c} XP\\ Electro\\ -0.137\\ -0.415\\ -0.385\\ -0.119\\ -0.166\\ -0.208\\ -0.219\\ -0.178\\ -0.219\\ -0.178\\ -0.315\\ -0.337\\ -0.352\\ -0.057\\ -0.057\\ -0.076\\ -0.126\\ 0.008\\ -0.135\\ -0.164\\ -0.235\\ -0.671\\ -0.671\\ -0.671\\ -0.196\end{array}$	Title 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K 8L 8M 8N 80 8P 8Q 8R 8S 8T 8U 8V	Docking score -7.088 -7.569 -6.605 -6.622 -7.044 -5.93 -6.002 -6.449 -6.448 -6.597 -7.158 -3.784 -6.2 -5.758 -6.77 -6.886 -6.97 -6.431 -7.555 -7.743 -6.557	Glide emodel -59.347 -52.731 -54.988 -54.083 -49.425 -48.033 -50.213 -44.411 -39.164 -48.444 -49.399 -47.651 -43.484 -52.018 -45.138 -51.865 -58.978 -45.754 -48.575 -65.246 -62.716 -51.801 -47.008	XP Hbond -0.7 -0.67 -0.7 0 0 -0.35 0 0 -0.35 0 0 -0.3 0 0 0 -0.3 0 0 0 -0.7 -0.7 0 0 0 -1.2 -1.92 0 -1.103	XP PhobEn -0.919 -0.664 -1.14 -0.837 -0.85 -0.902 -0.868 -0.472 -0.678 -0.637 -0.818 -1.381 -0.286 -0.427 -0.125 -0.601 -0.925 -0.814 -0.964 -0.206 -0.341 -1.057	$\begin{array}{c} XP\\ Electro\\ -0.385\\ -0.259\\ -0.208\\ -0.187\\ -0.174\\ -0.095\\ -0.06\\ -0.118\\ 0.054\\ -0.176\\ -0.15\\ -0.15\\ -0.156\\ -0.196\\ -0.015\\ -0.12\\ -0.124\\ -0.204\\ -0.135\\ -0.095\\ -0.612\\ -0.639\\ -0.319\\ \end{array}$

Table V — Molecular Modeling prediction for compound 10A-10X							
Title	Docking	Glide	XP	XP	XP		
	score	emodel	Hbond	PhobEn	Electro		
10A	-6.233	-51.369	-1.33	-0.614	-0.338		
10B	-7.001	-45.079	-1.117	-0.819	-0.438		
10C	-5.253	-44.354	-0.394	-0.652	-0.345		
10D	-6.774	-47.317	-0.7	-0.739	-0.377		
10E	-6.619	-44.126	-0.7	-0.815	-0.347		
10F	-5.95	-44.858	-0.622	-1.077	-0.265		
10G	-6.845	-45.103	-0.663	-1.026	-0.267		
10H	-6.144	-46.083	-0.7	-1.016	-0.432		
10I	-6.434	-46.688	-0.7	-0.883	-0.411		
10J	-6.305	-41.685	-0.7	-0.894	-0.167		
10K	-8.184	-47.763	-0.7	-0.985	-0.45		
10L	-6.024	-50.715	-1.339	-0.326	-0.693		
10M	-5.704	-54.33	-0.465	0	-0.265		
10N	-5.97	-46.742	-0.7	0	-0.341		
100	-6.026	-53.874	-1.162	-0.591	-0.311		
10P	-6.737	-47.026	-0.7	-0.748	-0.38		
10Q	-6.955	-46.717	-0.7	-0.743	-0.381		
10R	-6.58	-42.475	-0.543	-1.092	-0.287		
10S	-6.013	-46.478	-0.647	-1.113	-0.267		
10T	-7.436	-55.669	-1.964	-0.242	-0.67		
10U	-7.34	-49.269	-2.086	-0.534	-0.433		
10V	-5.991	-43.617	-0.7	-1.121	-0.571		
10W	-5.654	-44.394	-0.212	-0.979	-0.41		
10X	-6.143	-47.47	-0.603	-0.771	-0.269		
HDDG046	-8.611	-69.782	-0.7	-0.95	-0.213		

Figure 6 — Molecular modeling prediction for compound HDDG046

of docking score from -8.31 to -4.206 kcal/mol (Table I), where the lowest being the -8.31kcal/mol for compound 2K. This score is considered to be of substantial importance. Moreover, the docking score for HDDG046 (10,13-dimethyl-6-(pent-2-yn-1-yloxy)-7, 8, 9, 10, 11, 12, 13. 14, 15. 16-decahydro-3H-cyclopenta phenanthrene-3,17(6H)-dione) was found to be -8.611kcal/mol which is comparable to our designed molecule 2K. Apart from this, the Figure 7 showcases H- bonding between the "N" of pyridine ring of 2K and MET 374 of our target. In addition, the $\pi - \pi$ stacking of the pyridine ring is associated with ARG 115.

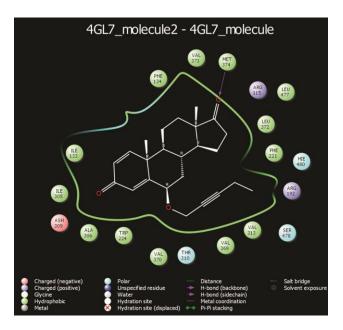


Figure 7 — Molecular modeling prediction for compound 2K

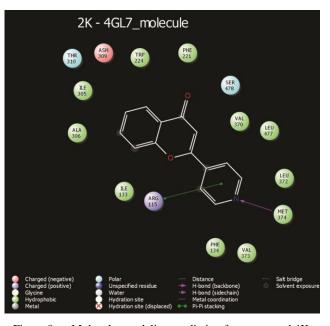


Figure 8 — Molecular modeling prediction for compound 4K

Molecular Modeling study of compounds (4A-4X)

The compounds **4A-4X** demonstrated a range of docking score -8.679 to -4.34 kcal/mol (Table II) with the target under study. Moreover, the lowest score was exhibited by compound **4K**. In this regard, the Figure 8 validated the H- bonding between the "N" of pyridine ring of **4K** and MET 374 of the target. Also, the ARG 115 and pyridine ring were found to have π – π stacking. In this case also, the docking score for 4K is of significant importance when compared to the HDDG046 ligand under comparison study.

Molecular Modeling study of compounds (6A-6X)

Juxtaposing the docking results of **6A-6X** compounds exhibited a low range score of -8.005 to - 6.01kcal/mol (Table III) for all the compounds except **6K**, which has the binding energy as -8.169 kcal/mol. It was also found to have similar interaction with the target enzyme i.e. the "**N**" of pyridine ring forms hydrogen bond with MET374 and the pyridine's π system overlaps with ARG115. To corroborate, $\pi - \pi$ stacking was observed in this case also (Figure 9).

Molecular Modeling study of compounds (8A-8X)

The compound series of **8A-8X** is found to have comparatively notable docking scores than the other series in this incumbent study. Most importantly, the range of docking score witnessed in this series is from -9.035 to -3.784 kcal/mol (Table IV). **8W** molecule showed the binding energy as -9.035 kcal/mol, which is the lowest of all the designed compounds including the ligand HDDG046. The –NH group of imidazole ring in **8W** molecule is predicted to have H-bonding interaction with ASH309. In addition, the $\pi - \pi$ stacking is observed with the imidazole ring and PHE221. As a result of which it establishes credibility to be a prospective aromatase inhibitor on the basis of docking reports (Figure 10).

Molecular modeling study of compounds (10A-10X)

The compounds **10K** and **10L** from the series **10A-10X** has docking score -8.184and -5.253kcal/mol where the least value attributed to compound **10K** which

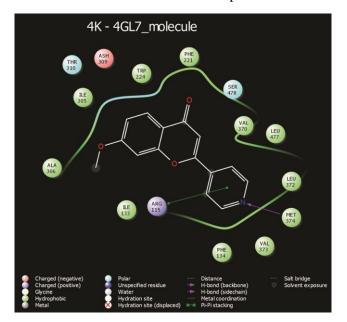


Figure 9 — Molecular modeling prediction for compound 6K

is comparable to the docking score of HDDG046 (Table V). Moreover, the molecule **10K** forms the H-bonding interaction by using "N" of pyridine ring and MET 374. Additionally, the $\pi - \pi$ stacking in **10K** is noted to be with ARG 115. So, it can be considered as potential aromatase inhibitors based on the molecular modeling predictions (Figure 11).

ADMET Predictions using QuikProp and pkCSM

Initially, the best selected molecules from each of the series were subjected to QuikProp and a single

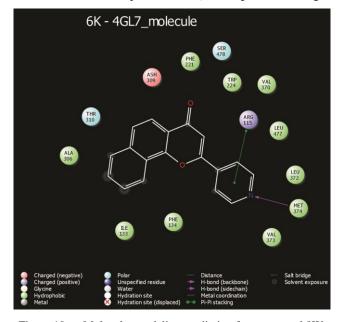


Figure 10 — Molecular modeling prediction for compound 8W

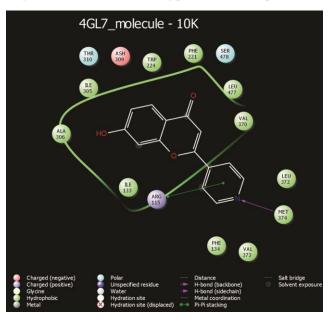


Figure 11 — Molecular modeling prediction for compound 10K

molecule was selected from the results which was further applied to pkCSM for a detailed ADMET study (Table VI).

The newly designed molecule 8W exhibits significant potential among the parameters such as QlogPoct, QPlogPw, QPlogPo/w and QPlogS of QuickProp.Its implication is comparable with HDDG046 and subsequently, both 8W and HDDG046 were studied using pkCSM.

Here, the Caco2 permeability is considered as higher if its value is greater than 0.90(log Papp in 10^{-6} cm/s). In this regard; as per Table VII, Caco2 permeability of 8W is estimated to be slightly higher than HDDG046. Moreover, the intestinal absorption is found to be prime for both the molecules as it is quite higher than the poorly absorbed drugs (>30%; normal range for optimally absorbed drugs). However, the skin permeability of HDDG046 (-3.197) is found to be lesser

than 8W (-2.735). The drugs with $\log Kp > -2.5$ are considered to cross the skin barriers in dearth. CNS permeability for 8W is deduced to be optimum (greater than -2) while that of HDDG046 is comparatively reduced. To a fortiori, 8W is noted to be a substrate for P- glycoprotein, which is useful for the distribution of drug locally; ultimately modifying the metabolism and

Table VI — ADME study of compounds 2K, 4K, 6K, 8W, 10K and HDDG046 conducted by QuickProp							
Sr. No	. Compound	QPlog	QPlog	QPlog	QPlog		
	ID	Poct	Pw	Po/w	S		
	(8.0-43.0)*	(5.0-48.0)*	(-2.0-6.0)*	(-0.6-0.5)*		
1	2K	11.158	7.777	2.023	-2.648		
2	4K	11.999	7.985	2.062	-2.681		
3	6K	13.377	8.351	2.957	-3.779		
4	8W	14.871	10.153	2.318	-3.709		
5	10K	13.177	9.87	1.515	-2.901		
6	HDDG046	16.776	7.52	3.919	-5.629		

Table VII — Comprehensive ADMET predictions of HDDG046 and 8W using pkCSM							
Property	Model Name	Predicted Value (HDDG046)	Predicted Value (8W)	Unit			
Absorption	Water solubility	-5.117	-2.886	Numeric (log mol/L)			
	CaCo ₂ permeability	1.226	1.235	Numeric (log Papp in 10^{-6} cm/s)			
	Intestinal absorption (human)	99.238	91.826	Numeric (% Absorbed)			
	Skin Permeability	-3.197	-2.735	Numeric (log Kp)			
	P-glycoprotein substrate	No	Yes	Categorical (Yes/No)			
	P-glycoprotein I inhibitor	Yes	Yes	Categorical (Yes/No)			
	P-glycoprotein II inhibitor	Yes	Yes	Categorical (Yes/No)			
Distribution	VDss (human)	0.302	0.076	Numeric (log L/kg)			
	Fraction unbound (human)	0.042	0.128	Numeric (Fu)			
	BBB permeability	-0.039	0.593	Numeric (log BB)			
	CNS permeability	-2.44	-1.831	Numeric (log PS)			
Metabolism	CYP2D6 substrate	No	No	Categorical (Yes/No)			
	CYP3A4 substrate	Yes	Yes	Categorical (Yes/No)			
	CYP1A2 inhibitior	No	Yes	Categorical (Yes/No)			
	CYP2C19 inhibitior	No	Yes	Categorical (Yes/No)			
	CYP2C9 inhibitior	No	No	Categorical (Yes/No)			
	CYP2D6 inhibitior	No	Yes	Categorical (Yes/No)			
	CYP3A4 inhibitior	No	Yes	Categorical (Yes/No)			
Excretion	Total Clearance	0.698	0.715	Numeric (log ml/min/kg)			
	Renal OCT2 substrate	Yes	Yes	Categorical (Yes/No)			
Toxicity Toxicity	AMES toxicity	No	Yes	Categorical (Yes/No)			
	Max. tolerated dose (human)	-0.357	0.278	Numeric (log mg/kg/day)			
	hERG I inhibitor	No	No	Categorical (Yes/No)			
	hERG II inhibitor	Yes	Yes	Categorical (Yes/No)			
	Oral Rat Acute Toxicity (LD50)	1.364	2.489	Numeric (mol/kg)			
	Oral Rat Chronic Toxicity (LOAEL)	1.535	-0.1	Numeric (log mg/kg_bw/day)			
	Hepatotoxicity	No	No	Categorical (Yes/No)			
	Skin Sensitization	No	No	Categorical (Yes/No)			
	T.Pyriformis toxicity	0.875	0.285	Numeric (log ug/L)			
	Minnow toxicity	0.462	1.781	Numeric (log mM)			

excretion properties. Apart from this, the oral rat acute toxicity i.e the LD_{50} value for 8W is found to be 2.489 mol/kg, which is quite higher than 1.364 mol/kg for HDDG046. This implies that the therapeutic window for our designed molecule 8W will be considerably bigger than that of reported compound HDDG046.

Conclusion

In this incumbent study of predicting novel flavonoid derivatives for inhibiting human placental aromatase in view to treat breast cancer, several molecules like 2K. 4K, 6K, 8W and 10K revealed noteworthy importance. Out of which, the molecule 8W is found to be a potential inhibitor based on its molecular modeling studies and ADMET predictions. The docking score for 8W is estimated to be -9.035 kcal/mol which is substantially better than the score of HDDG046 i.e. -8.611 kcal/mol. This molecule was considered to be superior among the series based on the docking results and mainly through the broad study by pkCSM platform. With relevance to solubility, permeability, enzyme/transporter interactions and toxicity studies, 8W molecule has corroborated its veracity to become a lead molecule in near future, as it tends to have optimum criteria to suffice the lead discovery process in coming years.

Conflict of Interest

Authors have no conflict of interest.

Acknowledgement

The authors thank the Gujarat Council of Science and Technology (GUJCOST, Gandhinagar, Gujarat, India) for financial assistance (under Minor Research Project) and also thankful to Raghu Rangaswamy, Anirban Banerjee and Vinod Devaraji (Schrödinger team) for providing licensed version of Maestro 10.4, Schrödinger. The authors also acknowledge Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa (CHARUSAT) for providing the necessary infrastructure to carry out the research.

References

- 1 Yue W, Int J Cancer, 127(8) (2010) 1748.
- 2 Russo J & Russo I H, J Ster Biochem and Mol Biol, 102 (2006) 89.
- 3 Russo I H & Russo J, Envir Health Persp, 104(9) (1996) 938.
- 4 Viciano I, Marti S, J Phy Chem B, 120(13) (2016) 333.
- 5 Van Meeuwen J A, Ter Burg W, Piersma A H, Van Den Berg M & Sanderson J T, *Food and Chem Tox*, 45(11) (2007) 2319.
- 6 Vaz A D, Cytochrome Activation by Cytochromes P450: A Role for Multiple Oxidants in the Oxidation of Substrates.
- 7 Ghosh D, *J Med Chem*, 55(19) (2012) 8464.
- 8 Fabian C J, Int J Clin Pra, 61(12) (2007) 2051.

- 9 Sporn M B & Lippman S M, 'Agents for chemoprevention and their mechanism of action', in *Holland-Frei Cancer Medicine*, 6th edn (BC Decker, Hamilton) (2003).
- 10 Dutertre M, Smith CL, Molecular mechanisms of selective estrogen receptor modulator (SERM) action. J of Pharmacology and Exp Ther, 295(2) (2000) 431.
- 11 Balunas MJ, Brueggemeier RW, Kinghorn AD, Anti-Can Agents in Med Chem, (6) (2008) 646.
- 12 Lorizio W et.al, Breast Can Res and Treat, 132(3) (2012) 1107.
- 13 Nielsen AJ, McNulty J, Med Res Rev, 39(4) (2019) 1274.
- 14 Schneider Y et.al, Int J of Cancer, 107(2) (2003) 189.
- 15 Rimando AM et. al, *J of Agri and Food Chem*, 50(12) (2002) 3453.
- 16 Nakagawa H et. al, *J of Can Res and Clin Onclogy*, 127(4) (2001) 258.
- 17 Abdel Bar FM, Abbas GM, Gohar AA, Lahloub MF, *Nat Prod Res*, (2019) 1.
- 18 Chung EY et. al, *Planta medica*, 69(08) (2003) 710.
- 19 Kumar S, Pandey AK, The Sci World J, (2013) 1.
- 20 Panche AN, Diwan AD, Chandra SR, J of Nut Sci, 5(e47) (2016) 1.
- 21 Narayana KR, Reddy MS, Chaluvadi MR, Krisha DR, *Ind J of Pharmacology*, 33(1) (2001) 2.
- 22 Lephart ED, Enz Res, Volume (2015) 1.
- 23 Kao YC, Environental Health Perspectives, 106(2) (1998) 85.
- 24 Shah U, Patel S, Patel M, Gandhi K, Patel A, *Indian Journal of Chemistry B*, 59B (2020) 283.
- 25 Pouget, C et.al, Pharm Res, 19(3) (2002) 286.
- 26 Sanderson JT, Boerma J, Lansbergen GW, van den Berg M, Tox and App Pharmacology, 182(1) (2002) 44.
- 27 Yahiaoui S et.al, Bio & Med Chem Let, 14(20) (2004) 5215.
- 28 Pouget C, Lauthier F, Simon A, Fagnere C, Bioorg & Med Chem Lett, 11(24) (2001) 3095.
- 29 Ibrahim AR, Yusuf J, Haji A, *The J of Ster Biochem and Mol Bio*, 37(02) (1990) 257.
- 30 Yahiaoui S et.al, Eur J of Med Chem, 46(06) (2012) 2541.
- 31 Yahiaoui S et.al, Bioorg & Med Chem Lett, 16(3) (2008) 1474.
- 32 Patel S, Shah U, Asian J of Pharm and Clin Res, 10(02) (2017) 403.
- 33 de Ruyck J, Brysbaert G, Blossey R, Lensink MF, Adv and App in Bioinf and Chem, 9 (2016) 1.
- 34 Pettersen EF et. al, J of Comp Chem, 25(13) (2004) 1605.
- 35 Grosdidier A, Zoete V, Michielin O, Nucleic Acids Research, 39(2) (2011) W270.
- 36 Shah U, Patel S, Patel M, Upadhayay J, Let in Drug Des & Dis, 14(11) (2017) 1267.
- 37 Schrodinger Tutorial. Msi.umn.edu/sites/default/files/ SchrodingerTutorial2011.html (Assessed on November 28, 2019)
- 38 Glide user manual. Isp.ncifcrf.gov/files/isp/uploads/2010/ 07/gli55_user_manual.html (Assessed on November 28, 2019)
- 39 Ikram N et.al, Biomolecules, 9(4) (2019) 1.
- 40 QikProp [Internet]. QikProp | Schrödinger. [cited 2019Nov28]. Available from: https://www.schrodinger.com/qikprop
- 41 Kerns, Edward & Di, Li. (2008). Drug-Like Properties: Concept, Structure Design and Methods, From ADME to Toxicity Optimization.
- 42 Abraham MH, Chadha HS, Leitao RA, Mitchell RC, Lambert WJ, Kaliszan R, Nasal A, Haber P. *Journal of Chromatography* A. 766(1-2) (1998) 35.
- 43 Pires DE, Blundell TL, Ascher DB, *J Med Chem*, 58(9) (2015) 4066.