15 research outputs found

    Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators

    Full text link
    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 K to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300K and 30K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With lowering of temperature, we find that the positively dispersing electromechanical modes evolve to negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature compensated sensors.Comment: For supplementary information and high resolution figures please go to http://www.tifr.res.in/~deshmukh/publication.htm

    Facile fabrication of lateral nanowire wrap-gate devices with improved performance

    Full text link
    We present a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility. Our process uses e-beam lithography with a single resist-spinning step, and does not require chemical etching. We measure, in the temperature range 1.5-250 K, a subthreshold slope of 5-54 mV/decade and mobility of 2800-2500 cm2/Vscm^2/Vs -- significantly larger than previously reported lateral wrap-gate devices. At depletion, the barrier height due to the gated region is proportional to applied wrap-gate voltage.Comment: 3 pages, 3 figure

    Magnetotransport properties of individual InAs nanowires

    Full text link
    We probe the magnetotransport properties of individual InAs nanowires in a field effect transistor geometry. In the low magnetic field regime we observe magnetoresistance that is well described by the weak localization (WL) description in diffusive conductors. The weak localization correction is modified to weak anti-localization (WAL) as the gate voltage is increased. We show that the gate voltage can be used to tune the phase coherence length (lϕl_\phi) and spin-orbit length (lsol_{so}) by a factor of \sim 2. In the high field and low temperature regime we observe the mobility of devices can be modified significantly as a function of magnetic field. We argue that the role of skipping orbits and the nature of surface scattering is essential in understanding high field magnetotransport in nanowires

    High Q electromechanics with InAs nanowire quantum dots

    Full text link
    In this report, we study electromechanical properties of a suspended InAs nanowire (NW) resonator. At low temperatures, the NW acts as the island of a single electron transistor (SET) and we observe a strong coupling between electrons and mechanical modes at resonance; the rate of electron tunneling is approximately 10 times the resonant frequency. Above and below the mechanical resonance, the magnitude of Coulomb peaks is different and we observe Fano resonance in conductance due to the interference between two contributions to potential of the SET. The quality factor (QQ) of these devices is observed 105\sim10^5 at 100 mK.Comment: 4 pages. Supplementary material at http://www.tifr.res.in/~nan

    Nondestructive imaging of atomically thin nanostructures buried in silicon

    Get PDF
    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.ISSN:2375-254

    2D-3D crossover in a dense electron liquid in silicon

    Get PDF
    Doping of silicon via phosphene exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a new and well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8×1014n_s=2.8\times 10^{14}\,cm2^{-2}) disordered two-dimensional array of P atoms, the full field angle-dependent magnetostransport is remarkably well described by classic weak localization theory with no corrections due to interaction effects. The two- to three-dimensional cross-over seen upon warming can also be interpreted using scaling concepts, developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.Comment: 9 pages, 4 figures, supplementary informatio

    Tunable thermal conductivity in defect engineered nanowires at low temperatures

    No full text
    We measure the thermal conductivity (κ) of individual InAs nanowires (NWs), and find that it is three orders of magnitude smaller than the bulk value in the temperature range of 10–50 K. We argue that the low κ arises from the scattering of phonons in the random superlattice of twin defects oriented perpendicular to the axis of the NW. We observe a significant electronic contribution arising from the surface accumulation layer, which gives rise to the tunability of κ with the application of an electrostatic gate and a magnetic field. Our devices and measurements of κ at different carrier concentrations and magnetic field offer a means to study unique aspects of nanoscale thermal transport
    corecore