26 research outputs found
Retinoblastoma protein prevents enteric nervous system defects and intestinal pseudo-obstruction
The retinoblastoma 1 (RB1) tumor suppressor is a critical regulator of cell cycle progression and development. To investigate the role of RB1 in neural crest–derived melanocytes, we bred mice with a floxed Rb1 allele with mice expressing Cre from the tyrosinase (Tyr) promoter. TyrCre(+);Rb1(fl/fl) mice exhibited no melanocyte defects but died unexpectedly early with intestinal obstruction, striking defects in the enteric nervous system (ENS), and abnormal intestinal motility. Cre-induced DNA recombination occurred in all enteric glia and most small bowel myenteric neurons, yet phenotypic effects of Rb1 loss were cell-type specific. Enteric glia were twice as abundant in mutant mice compared with those in control animals, while myenteric neuron number was normal. Most myenteric neurons also appeared normal in size, but NO-producing myenteric neurons developed very large nuclei as a result of DNA replication without cell division (i.e., endoreplication). Parallel studies in vitro found that exogenous NO and Rb1 shRNA increased ENS precursor DNA replication and nuclear size. The large, irregularly shaped nuclei in NO-producing neurons were remarkably similar to those in progeria, an early-onset aging disorder that has been linked to RB1 dysfunction. These findings reveal a role for RB1 in the ENS
Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Emerging insights into the molecular pathogenesis of uveal melanoma
Uveal melanoma is the most common primary cancer of the eye, and often results not only in vision loss, but also in metastatic death in up to half of patients. For many years, the details of the molecular pathogenesis of uveal melanoma remained elusive. In the past decade, however, many of these details have emerged to reveal a fascinating and complex story of how the primary tumor evolves and progresses. Early events that disrupt cell cycle and apoptotic control lead to malignant transformation and proliferation of uveal melanocytes. Later, the growing tumor encounters a critical bifurcation point, where it progresses along one of two genetic pathways with very distinct genetic signatures (monosomy 3 vs 6p gain) and metastatic propensity. Late genetic events are characterized by increasing aneuploidy, most of which is nonspecific. However, specific chromosomal alterations, such as loss of chromosome 8p, can hasten the onset of metastasis in susceptible tumors. Taken together, this pathogenetic scheme can be used to construct a molecularly based and prognostically relevant classification of uveal melanomas that can be used clinically for personalized patient management
Recommended from our members
Loss of Id2 Potentiates the Tumorigenic Effect of Rb Inactivation in a Mouse Model of Retinoblastoma
Purpose: In some cancers, the oncogenic consequences of inactivating the retinoblastoma protein (Rb) appear to be mediated by unrestrained activity of the inhibitor of DNA binding protein Id2. The role of Id2 has not yet been investigated in the prototype cancer Rb-defective cancer, retinoblastoma itself. This study investigated whether loss of Id2 modified the effects of Rb inactivation in a mouse model of retinoblastoma.
Methods: Id2 was analyzed in cultured cells using qPCR, Western blot, and colony formation assays. LHβ-Tag transgenic mice were crossed with Id2 heterozygotes to obtain mice with all three Id2 genotypes. Intraocular tumors were assessed for size, degree of differentiation, mitotic index, and tumor vascular density at 15 weeks of age.
Results: Retinoblastoma cell lines expressed low levels of Id2 mRNA and protein. Depletion of Id2 in Rb-inactivated cells increased clonogenic activity. Id2-deficient tumors in vivo were significantly larger, less differentiated, and more vascularized than Id2-wild-type tumors (P = 0.02, P = 0.01, P = 0.0001, respectively). There was a dosage effect for loss of each Id2 allele with respect to differentiation and vascular density.
Conclusions: Id2 suppresses rather than promotes tumor progression in this mouse model of retinoblastoma. Id2 can act as either an oncogene or a tumor suppressor depending on context
The bidirectional crosstalk between metastatic uveal melanoma cells and hepatic stellate cells engenders an inflammatory microenvironment
International audienceUveal melanoma is the most common primary ocular neoplasm in adults. It is peculiar for its hematogenous dissemination and its high propensity to spread to the liver. Current treatments rarely prolong patient survival. We hypothesized that metastatic uveal melanoma cells modulate the function of surrounding hepatic stellate cells to facilitate their own growth and survival. This study was conducted to investigate the role of the hepatic microenvironment on uveal melanoma aggressiveness. We demonstrated that the paracrine signaling of surrounding hepatic stellate cells have more transcriptional impact on metastatic uveal melanoma cells. Upregulated transcripts were linked to inflammation and included several interleukins. The uveal melanoma-stellate cell crosstalk induced as well the expression of transmembrane integrins. In addition, the interleukin-6 receptor inhibitor Tocilizumab did not reduce the growth of uveal melanoma cells. Our results provide evidence that inflammatory mediators are key players in the homing of uveal melanoma cells to the liver. The bidirectional crosstalk between uveal melanoma cells and hepatic stellate cells involved pro-fibrogenic interleukins. The inflammatory characteristics of the metastatic microenvironment might offer relevant therapeutic opportunities in uveal melanoma
Recent Advances in Molecular and Genetic Research on Uveal Melanoma
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies