17 research outputs found

    A focus on selected perspectives of the NUMEN project

    Get PDF
    The use of double charge exchange reactions is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategy adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud and in the analysis methods within the NUMEN project is briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis. An overview on the research and development activities on the MAGNEX magnetic spectrometer is also given, with a focus on the chosen technological solutions for the focal plane detector which will guarantee the performances at high-rate conditions

    NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay (0νββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0νββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0νββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0νββ

    Experimental challenges in the measurement of double charge exchange reactions within the NUMEN project

    No full text
    International audienceThe NUMEN project proposes to measure the absolute cross sections of heavy-ion induced Double Charge Exchange (DCE) reactions with the final goal to get information on the nuclear matrix elements involved in the neutrinoless double beta (0νββ) decay. The knowledge of the nuclear matrix elements is crucial to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay and also to compare experiments on different isotopes. DCE reactions and 0νββ decay present some similarities, the initial and final-state wave functions are the same and the transition operators are similar. Many challenges have to be faced for the experimental measurements of DCE reactions induced by heavy ions, since they are characterized by very low cross sections

    The nuclear matrix elements of 0νββ0\nu\beta\beta decay and the NUMEN project at INFN-LNS

    Get PDF
    International audienceThe goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. The knowledge of the nuclear matrix elements is crucial to infer the neutrino average masses from the possible measurement of the half-life of 00νββ decay and to compare experiments on different isotopes. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are performed as tools for β+β+ and β-β- decays, respectively. The experiments are performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron (CS) to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield of about two orders of magnitude. To this purpose, frontier technologies are going to be developed for both the accelerator and the detection systems. In parallel, advanced theoretical models will be developed to extract the nuclear structure information from the measured cross sections

    The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS

    No full text
    The goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. The knowledge of the nuclear matrix elements is crucial to infer the neutrino average masses from the possible measurement of the half-life of 00νββ decay and to compare experiments on different isotopes. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are performed as tools for β+β+ and β-β- decays, respectively. The experiments are performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron (CS) to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield of about two orders of magnitude. To this purpose, frontier technologies are going to be developed for both the accelerator and the detection systems. In parallel, advanced theoretical models will be developed to extract the nuclear structure information from the measured cross sections

    Charge-state distributions of 20 Ne ions emerging from thin foils

    No full text
    New experimental measurements of charge state distributions produced by a 20 Ne 10+ beam at 15 MeV/u colliding on various thin solid targets are presented. The use of the MAGNEX magnetic spectrometer enabled measurements of the 8 + charge state down to fractions of a few 10 −5 . The use of different post-stripper foils located downstream of the main target is explored, showing that low Z materials are particularly effective to shift the charge state distributions towards fully stripped conditions. The dependence on the foil thickness is also studied and discussed. © 2019 The Author

    NURE : An ERC project to study nuclear reactions for neutrinoless double beta decay

    No full text
    Neutrinoless double beta decay (0νββ) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the ββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0νββ decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elements (NME) and a function of the masses of the neutrino species. Thus the knowledge of the NME can give information on the neutrino mass scale, if the 0νββ decay rate is measured. In the NURE project, supported by a Starting Grant of the European Research Council, nuclear reactions of double charge-exchange (DCE) will be used as a tool to extract information on the ββ NME. In DCE reactions and ββ decay, the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements.peerReviewe
    corecore