1,630 research outputs found

    Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation

    Get PDF
    Two-dimensional (2D) crystals' edge structures not only influence their overall properties but also dictate their formation due to edge-mediated synthesis and etching processes. Edges must be carefully examined because they often display complex, unexpected features at the atomic scale, such as reconstruction, functionalization, and uncontrolled contamination. Here, we examine atomic-scale edge structures and uncover reconstruction behavior in bilayer phosphorene. We use in situ transmission electron microscopy (TEM) of phosphorene/graphene specimens at elevated temperatures to minimize surface contamination and reduce e-beam damage, allowing us to observe intrinsic edge configurations. Bilayer zigzag (ZZ) edge was found the most stable edge configuration under e-beam irradiation. Through first-principles calculations and TEM image analysis under various tilting and defocus conditions, we find that bilayer ZZ edges undergo edge reconstruction and so acquire closed, self-passivated edge configurations. The extremely low formation energy of the closed bilayer ZZ edge and its high stability against e-beam irradiation are confirmed by first-principles calculations. Moreover, we fabricate bilayer phosphorene nanoribbons with atomically-sharp closed ZZ edges. The identified bilayer ZZ edges will aid in the fundamental understanding of the synthesis, degradation, reconstruction, and applications of phosphorene and related structures.Comment: 22 pages, 5 figure

    Motivations and locational factors of FDI in CIS countries: Empirical evidence from South Korean FDI in Kazakhstan, Russia, and Uzbekistan

    Full text link
    Considering the growing significance of Eurasian economic ties because of South Korea s New Northern Policy and Russia s New Eastern Policy, this study investigates the motivations and locational factors of South Korean foreign direct investment (FDI) in three countries in the Commonwealth of Independent States (CIS: Kazakhstan, Russia, and Uzbekistan) by employing panel analysis (pooled ordinary least squares (OLS), fixed effects, random effects) using data from 1993 to 2017. The results show the positive and significant coefficients of GDP, resource endowments, and inflation. Unlike conventional South Korean outward FDI, labour-seeking is not defined as a primary purpose. Exchange rates, political rights, and civil liberties are identified as insignificant. The authors conclude that South Korean FDI in Kazakhstan, Russia, and Uzbekistan is associated with market-seeking (particularly in Kazakhstan and Russia) and natural resource-seeking, especially the former. From a policy perspective, our empirical evidence suggests that these countries host governments could implement mechanisms to facilitate the movement of goods across regions and countries to increase the attractiveness of small local markets. The South Korean government could develop financial support and risk sharing programmes to enhance natural resource-seeking investments and mutual exchange programmes to overcome the red syndrome complex in South Korean society

    Implementation of the submarine diving simulation in a distributed environment

    Get PDF
    ABSTRACTTo implement a combined discrete event and discrete time simulation such as submarine diving simulation in a distributed environment, e.g., in the High Level Architecture (HLA)/Run-Time Infrastructure (RTI), a HLA interface, which can easily connect combined models with the HLA/RTI, was developed in this study. To verify the function and performance of the HLA interface, it was applied to the submarine dive scenario in a distributed environment, and the distributed simulation shows the same results as the stand-alone simulation. Finally, by adding a visualization model to the simulation and by editing this model, we can confirm that the HLA interface can provide user-friendly functions such as adding new model and editing a model

    Automatic generation of equations of motion for multibody system in discrete event simulation framework

    Get PDF
    AbstractIn this paper, the development of a simulation program that can automatically generate equations of motion for mutibody systems in the discrete event simulation framework is presented. The need to analyze the dynamic response of mechanical systems that are under event triggered conditions is increasing. General mechanical systems can be defined as multibody systems that are collections of interconnected rigid bodies, consistent with various types of joints that limit the relative motion of pairs of bodies. For complex multibody systems, a systematic approach is required to efficiently set up the mathematical models. Therefore, a dynamics kernel was developed to automatically generate the equations of motion for multibody systems based on multibody dynamics. The developed dynamics kernel also provides the numerical solver for the dynamic analysis of multibody systems. The general multibody dynamics kernel cannot deal with discontinuous state variables, event triggered conditions, and state triggered conditions, though. To enable it to deal with multibody systems in discontinuous environments, the multibody dynamics kernel was integrated into a discrete event simulation framework, which was developed based on the discrete event system specification (DEVS) formalism. DEVS formalism is a modular and hierarchical formalism for modeling and analyzing systems under event triggered conditions, which are described by discontinuous state variables. To verify the developed program, it was applied to an block-lifting and transport simulation, and dynamic analysis of the system is carried out

    The role of cap-assisted endoscopy and its future implications

    Get PDF
    Cap-assisted endoscopy refers to a procedure in which a short tube made of a polymer (mostly transparent) is attached to the distal tip of the endoscope to enhance its diagnostic and therapeutic capabilities. It is reported to be particularly useful in: (1) minimizing blind spots during screening colonoscopy, (2) providing a constant distance from a lesion for clear visualization during magnifying endoscopy, (3) accurately assessing the size of various gastrointestinal lesions, (4) preventing mucosal injury during foreign body removal, (5) securing adequate workspace in the submucosal space during endoscopic submucosal dissection or third space endoscopy, (6) providing an optimal approach angle to a target, and (7) suctioning mucosal and submucosal tissue with negative pressure for resection or approximation. Here, we review various applications of attachable caps in diagnostic and therapeutic endoscopy and their future implications

    Robust Adaptive Depth Control of Hybrid Underwater Glider in Vertical Plane

    Get PDF
    Hybrid underwater glider (HUG) is an advanced autonomous underwater vehicle with propellers capable of sustainable operations for many months. Under the underwater disturbances and parameter uncertainties, it is difficult that the HUG coordinates with the desired depth in a robust manner. In this study, a robust adaptive control algorithm for the HUG is proposed. In the descend and ascend periods, the pitch control is designed using backstepping technique and direct adaptive control. When the vehicle approaches the target depth, the surge speed control using adaptive control combined with the pitch control is used to keep the vehicle at the desired depth with a constant cruising speed in the presence of the disturbances. The stability of the proposed controller is verified by using the Lyapunov theorem. Finally, the computer simulation using the numerical method is conducted to show the effectiveness of the proposed controller for a hybrid underwater glider system

    Inhibitory effect of fucoidan on TNF-α-induced inflammation in human retinal pigment epithelium cells

    Get PDF
    Sargassum horneri (S. horneri) is a brown seaweed that contains a fucose-rich sulfated polysaccharide called fucoidan and is known to possess beneficial bioactivities, such as anti-inflammatory, antiviral, antioxidative, and antitumoral effects. This study aimed to determine the anti-inflammatory effects of AB_SH (hydrothermal extracts from S. horneri) and its bioactive compound (fucoidan) against tumor necrosis factor alpha (TNF-α)-induced inflammation in human retinal pigment epithelial (RPE) cells. AB_SH did not exhibit any cytotoxicity, and it decreased the mRNA expression of interleukin (IL)-6 and IL-8 and the production of the cytokines IL-6 and TNF-α. It also suppressed the expression levels of phosphorylated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), including c-Jun amino-terminal kinases (JNK), p38 protein kinases (p38), and extracellular signal-regulated kinase (ERK) proteins, suggesting that AB_SH inhibits activation of the NF-kB/MAPK signaling pathway. Since fucoidan was identified in the composition analysis of AB_SH, it was additionally shown to be required for its anti-inflammatory effects in TNF-α-stimulated human RPE cells. In line with the AB_SH results, fucoidan reduced the mRNA levels of IL-6, IL-1ß, and IL-8 and production of the cytokines IL-6, TNF-α, and IL-8 through the downregulation of the NF-kB/MAPK signaling pathway in a dose-dependent manner. Collectively, the ability of AB_SH from S. horneri hydrothermal extracts to reduce inflammation indicates that it may be a good functional ingredient for managing ocular disorders

    Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing

    Get PDF
    Under mild abiotic-stress conditions, Arabidopsis atg mutants showed a functional stay-green phenotype which is probably caused by the lack of chloroplastic autophagy and the retrograde regulation of senescence-associated gene expressio
    corecore